• No calculators are allowed on this exam.

• Please show all of your work. You may use backs of pages if necessary. You might not receive full credit for a correct answer if there is no work shown.

• You do not need to simplify all the way (but please evaluate trig functions when possible).

 Unacceptable answer: $4x^2 - x|_{1}^{2}$.
 Acceptable answer: $(4(2^2) - 2) - (4 - 1)$.

<table>
<thead>
<tr>
<th>QUESTION</th>
<th>VALUE</th>
<th>SCORE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
1. (20 pts) Compute the following.

(a) \[\int_0^4 \frac{1}{\sqrt{3x + 4}} \, dx \]

(b) \[\int \arctan(x) \, dx \]
2. (20 pts)

(a) Compute \(\int e^{\sin(x)} \cos(x) \, dx \)

(b) What is the average value of \(y = x \cos x \)

on the interval \([-\pi, \pi]\)?
3. (20 pts)

(a) Use Simpson’s rule with \(n = 4 \) to approximate
\[
\ln 5 = \int_{1}^{5} \frac{1}{x} \, dx.
\]

(b) Find a bound for the error of your estimate in part (a). (Recall that \(E_{n} \leq \frac{K(b-a)^{5}}{180n^{4}} \).)

(c) How large would \(n \) have to be in order to guarantee that \(S_n \approx \ln 5 \) is accurate to 5 decimal places? You do not need to simplify.
4. (20 pts) A solid is formed by rotating the shaded region around the y-axis.

![Diagram](image)

$x^2 + y^2 = 25$

(a) Express the volume of the solid as an integral using dx. Do not evaluate the integral.

(b) Express the volume of the solid as an integral using dy. Do not evaluate the integral.
5. **(20 pts)** A square well is 10m deep, and each of its four sides has length 2. The well is filled to a depth of 6m with water. Find the work done in pumping all of the water out of the well. (Recall that the density of water is 1000 kg/m³, and that the acceleration due to gravity is 9.8 m/sec².)