April 1, 2004

TATE CLASSES ON A PRODUCT OF TWO PICARD MODULAR SURFACES

ANDREW H. KNIGHTLY

Abstract. We compute the space of codimension 2 Tate classes on a product of two Picard modular surfaces in terms of automorphic representations on GL(n), n < 4. The relevant part of the fourth cohomology splits into subspaces indexed by pairs of such automorphic representations. When these representations are not automorphically induced, the corresponding Tate classes are shown to be abelian.

Let X be a smooth projective variety defined over a number field E, and let $\overline{X} = X \times_E \overline{Q}$. For a prime ℓ, let $H^i(X) = H^i(\overline{X}_{\text{et}}, \mathbb{Q}_\ell)$ be the ℓ-adic cohomology of X. The Galois group $G = \text{Gal}(\overline{Q}/E)$ acts on $H^i(X)$ by a representation ρ_i. For any $j \in \mathbb{Z}$, let $H^i(X)(j)$ denote the representation of G on $H^i(X)$ defined by $\rho_i \otimes \chi_j^\ell$, where χ^ℓ is the cyclotomic character. For any finite extension L/E, define $G_L = \text{Gal}(\overline{Q}/L)$, which is an open subgroup of G. A Tate class is an element of $H^{2i}(X)(i)^{G_L}$ for some L/E. A Tate class is defined over L if it is fixed by G_L.

To each cycle Z on X of codimension i and defined over L there is associated a cohomology class $c(Z) \in H^{2i}(X)(i)$ by ℓ-adic Poincaré duality. Such a cohomology class is said to be algebraic. In this situation $c(Z)$ is fixed by G_L. Tate’s conjecture asserts that conversely every Tate class is algebraic.

A basic first step in studying Tate’s conjecture is to identify the Tate classes on X. This is the goal of the present paper, when X is a product of two Picard modular surfaces (relative to a fixed imaginary quadratic field), and $i = 2$. We shall determine the Tate classes in terms of the automorphic representations associated to the two surfaces.

In [MP], V. K. Murty and D. Prasad studied the same problem for a product of Hilbert modular surfaces. Their work applies in addition to the case of two modular surfaces relative to two distinct real quadratic fields.

Notation: A denotes the ring of adeles of Q, and A_f the finite adeles. If E is a number field, then A_E denotes the adeles of E. If π is an automorphic representation then $\pi_f = \otimes_{p < \infty} \pi_p$, and π_E denotes the base change to E.
1. Review of the cohomology of a Picard surface

We collect some facts from [LR], where full details can be found. Fix a quadratic imaginary extension E/\mathbb{Q}, and a Hermitian inner product on E^3 of signature $(2, 1)$. Let GU be the associated quasi-split unitary similitude group over \mathbb{Q}. $GU_\infty = GU(\mathbb{R})$ is the real Lie group $GU(2, 1)$. The symmetric space associated to GU is

$$B = GU(\mathbb{R})/K_\infty Z_\infty,$$

where $K_\infty \subset GU(\mathbb{R})$ is a maximal compact subgroup, and Z is the center of GU. B can be identified in a natural way with the unit ball in \mathbb{C}^2.

Fix a nontrivial algebraic homomorphism $h : \text{Res}_\mathbb{R}^{\mathbb{C}}(G_m) \to GU(\mathbb{R})$ which satisfies the axioms for defining a Shimura variety. Fix an open compact subgroup K of $GU(\mathbb{A}_f)$ and let $S_K = S_K(GU, h)$ be the associated (compactified) Shimura variety. S_K is defined over E and $S_K(\mathbb{C})$ is the compactification of

$$\text{GU}(\mathbb{Q}) \backslash (B \times \text{GU}(\mathbb{A}_f))/K,$$

which is a disjoint union of arithmetic quotients of B.

Let $\mathcal{H} = \mathcal{H}_K(\mathbb{Q})$ be the Hecke algebra of \mathbb{Q}-valued compactly supported bi-K-invariant functions on $GU(\mathbb{A}_f)$. For any \mathbb{Q}-algebra A, let $\mathcal{H}(A) = \mathcal{H} \otimes A$. The Galois group

$$G = \text{Gal}(\overline{\mathbb{Q}}/E)$$

and the Hecke algebra \mathcal{H} both act on $H^*(S_K)$. Over $\overline{\mathbb{Q}}_\ell$, the degree 2 cohomology of S decomposes as an $\mathcal{H}(\overline{\mathbb{Q}}_\ell)$-module into isotypic components which are stable under the commuting action of G:

$$H^2(S_K) \otimes \overline{\mathbb{Q}}_\ell = \bigoplus_{\pi_f} H(\pi_f).$$

Here π runs through the automorphic representations of $GU(\mathbb{A})$ for which

- π occurs in the discrete spectrum of $GU(\mathbb{A})$.
- $\pi_\infty \in \{\text{triv}, D^+, D, D^-\}$, where triv is the trivial representation, and D^+, D, D^- are the lowest weight holomorphic, non-holomorphic, and anti-holomorphic discrete series representations of GU_∞ with trivial central characters.
- The subspace $\pi_f(C)$ of π_f consisting of K-fixed vectors is nonzero (and hence is an irreducible finite-dimensional representation of \mathcal{H}).

Any such π is either one-dimensional or cuspidal and infinite-dimensional. The second condition is equivalent to the property that

$$H^2(\text{Lie}(GU_\infty), K'_{\infty}, \pi_\infty) \neq 0,$$

where K'_{∞} is the centralizer of the center of K_{∞} in GU_{∞}. There are finitely many π which satisfy the conditions. There is a (noncanonical) decomposition

$$H(\pi_f) = V_{\pi_f} \otimes \pi^K_f,$$
where V_{π_f} is a \overline{Q}_ℓ-vector space of dimension $d(\pi_f) \leq 3$, and $\pi^K_f = \pi^K_f(\overline{Q}) \otimes \overline{Q}_\ell$, where $\pi^K_f(\overline{Q})$ is a \overline{Q}-form of $\pi^K_f(C)$. G acts continuously on $H(\pi_f)$ by a representation of the form $\rho_{\pi_f} \otimes 1$. (This is the definition of ρ_{π_f}). The isomorphism class of ρ is independent of the choice of the above decomposition; for concreteness, one can take $V_{\pi_f} = \text{Hom}_H(\pi^K_f, H^2(S_K) \otimes \overline{Q}_\ell)$, but this obscures the point of view that ρ_{π_f} acts on the cohomology.

Fix an embedding $\varepsilon : \overline{Q}_\ell \hookrightarrow C$.

The representation ρ is unramified at almost every place w of E. The local L-factor of ρ at such a place
\[
L_w(s, \rho) = \det(1 - \varepsilon(\rho(Fr_w))q_w^{-s})^{-1},
\]
where $Fr_w \in G$ is a geometric Frobenius element.

The relationship between ρ_{π_f} and π_f is the following. There is an automorphic representation σ_π of $GL_d(\pi_f)(A_E)$ associated to π in a natural way (see below) such that for almost all w
\[
L_w(s, \rho_{\pi_f}) = L_w(s - 1, \sigma_\pi).
\]
The dimension $d(\pi_f)$ of ρ_{π_f} is the number of π_∞ such that $\pi_f \otimes \pi_\infty$ occurs in the discrete spectrum. This number varies according to the classification of π_f as stable, endoscopic, or 1-dimensional. If π_f is stable and infinite-dimensional, then $d(\pi_f) = 3$, and
\[
\sigma_\pi = (\pi_0)_E \otimes \overline{\chi}_\pi,
\]
where $\pi_0 = \pi|_{U(3)}$. (This is independent of the choice of π_∞). In the endoscopic cases, $d(\pi_f) = 1$ or 2. The 2-dimensional case occurs in certain instances when π_0 is an endoscopic lift of some $\tau_1 \otimes \tau_2$ on $U(2) \times U(1)$. In these cases,
\[
\sigma_\pi = (\tau_1)_E \otimes \overline{\chi}_\pi,
\]
where $(\tau_1)_E$ is the nonstandard base change of τ_1. The remaining (one-dimensional) cases are summarized in [BR].

Note the difference between σ_π and $(\pi)_E$ in the stable case:
\[
(\pi)_E \cong (\pi_0)_E \otimes \overline{\chi}_\pi
\]
is a representation of $GL_3(A_E) \times GL_1(A_E)$, while
\[
\sigma_\pi = (\pi_0)_E \otimes (\overline{\chi}_\pi \circ \det)
\]
is a representation of $GL_3(A_E)$. It is therefore conceivable that $\sigma_{\pi_1} \cong \sigma_{\pi_2}$ when $(\pi_1)_E \not\cong (\pi_2)_E$, i.e. two distinct L-packets on GU could give rise to isomorphic Galois representations. In this case however, $(\pi_1)_0$ and $(\pi_2)_0$ belong to the same L-packet on U.

Definition 1. We say that π is **AI** if σ_π is automorphically induced from a Hecke character of some field L of degree $d(\pi_f)$ over E.
In the stable case, \(\pi \) is AI if and only if \((\pi_0)_E\) is automorphically induced. Also note that if \(d(\pi_f) = 1\) then \(\pi_f\) is (trivially) AI by this definition.

We recall two theorems from [BR].

Theorem 1 ([BR], 2.2.1). Let \(\pi \) and \(\rho = \rho_{\pi_f} \) be as above. For any number field \(L/E \) let \(\rho_L = \rho|_{G_L} \). Then one of the following two statements holds:

1. \(\rho_L \) is irreducible for every finite extension \(L/E \).
2. There exists an extension \(L/E \) of degree \(d(\pi_f) \) and an algebraic Hecke character \(\Psi \) of \(L \) such that \(\rho \cong \text{Ind}_E^L(\Psi) \).

The second case occurs precisely when \(\pi \) is AI.

This irreducibility result is used in [BR] to prove the algebraicity of the Tate classes in \(H^2(S_K)(1) \). For a large class of \(\pi_f \), there are no associated Tate classes:

Theorem 2 ([BR], 3.2.1). Let \(H^T(\pi_f) \) denote the space of Tate classes in \(H(\pi_f)(1) \) for \(S_K \). Then

\[
H^T(\pi_f) = \begin{cases}
H(\pi_f)(1) & \text{if } d(\pi_f) = 1 \text{ and } \text{Inf}(\pi_f) = D \text{ or } \text{triv} \\
\{0\} & \text{otherwise.}
\end{cases}
\]

All such Tate classes are defined over abelian extensions of \(E \).

For use in the next section, we record the following observation.

Lemma 1. Suppose \(\pi_f \) is as above. Then \(V_{\pi_f}^* = V_{\pi_f}(2) \).

Proof. Let \(\sigma = \sigma_\pi \) as in (2). Given a place \(w \) of \(E \), let \(\text{Fr}_w \) be a geometric Frobenius element of \(\text{Gal}(\overline{Q}/E) \), and let \(g_w(\sigma) \) be the Langlands class of \(\sigma \) at \(w \). Then (2) is equivalent to

\[
\rho_\pi(\text{Fr}_w) \sim q^w_g(\sigma),
\]

for almost all \(w \). Then

\[
\rho_\pi^*(\text{Fr}_w) \sim q^{-1}_w g_w(\sigma)^{-1} \\
= q^{-2}_w (q_w g_w(\sigma)^{-1}) \\
= q^{-2}_w \rho_{\pi^*}(\text{Fr}_w),
\]

since \(\sigma_{\pi}^* = \sigma_{\pi^*} \). Therefore \(\rho_{\pi^*} \cong \rho_{\pi^*} \otimes \chi_\ell^2 \) by Cebotarev and continuity of the \(\rho \)'s. \(\square \)

2. **Cohomology of a Product of Picard Surfaces**

If \(S_1 \) and \(S_2 \) are two Picard surfaces for open compact subgroups \(K_1 \) and \(K_2 \), then by the Künneth formula we have

\[
H^4(S_1 \times S_2)(2) = \bigoplus_{i+j=4} H^i(S_1) \otimes H^j(S_2)(2).
\]

The most interesting part of this decomposition is

\[
H^2(S_1)(1) \otimes H^2(S_2)(1).
\]
(Although the other summands will provide Tate classes, the Galois representations on H^j, $j \neq 2$, are abelian ([Ro2] §4.3), and indeed in the nontrivial cases ($j = 1, 3$) are attached to the Albanese varieties, which are of CM-type and for which Tate’s conjecture is known.)

Suppose R is a ring, and that V, W are free R-modules on which G acts continuously. Recall that

$$V^* \otimes W \cong \text{Hom}_R(V, W)$$

as representations, where G acts on the right by $(gf)(v) = g(f(g^{-1}v))$. It follows from this that $f \in \text{Hom}_R(V, W)^G$ if and only if $f \in \text{Hom}_{R[G]}(V, W)$, i.e. if and only if f is an intertwining operator from V to W.

In order to use automorphic representations to study the Tate classes in $H^2(S_1)(1) \otimes H^2(S_2)(1)$, we extend scalars to \mathbb{Q}_ℓ:

$$[H^2(S_1)(1) \otimes H^2(S_2)(1)] \otimes_{\mathbb{Q}} \mathbb{Q}_\ell$$

$$= [H^2(S_1)(1) \otimes \mathbb{Q}_\ell] \otimes [H^2(S_2)(1) \otimes \mathbb{Q}_\ell]$$

$$= \left(\bigoplus_i V_{\pi_i}(1) \otimes \pi_i^{K_i} \right) \otimes \left(\bigoplus_j V_{\pi_j}(1) \otimes \pi_j^{K_j} \right),$$

where π_i and π_j are representations of $\text{GU}(A_f)$, and V_{π_i} is a \mathbb{Q}_ℓ-vector space of dimension ≤ 3. We rearrange the factors and pull out the sums to get:

$$\bigoplus_{i,j} (V_{\pi_i}(1) \otimes V_{\pi_j}(1)) \otimes \left(\pi_i^{K_i} \otimes \pi_j^{K_j} \right).$$

G acts on each summand above by $(\rho_i(1) \otimes \rho_j(1)) \otimes 1$.

For a number field L containing E we need to compute the G_L-invariant subspace of $V_{\pi_1}(1) \otimes V_{\pi_2}(1)$. This is isomorphic to the space

$$\text{Hom}_{\mathbb{Q}_\ell[G_L]}(V_{\pi_1}(1)^*, V_{\pi_2}(1)) = \text{Hom}_{\mathbb{Q}_\ell[G_L]}'(V_{\pi_1}^*(-1), V_{\pi_2}(1)).$$

By Lemma 1, $V_{\pi_1}^* = V_{\pi_1}(2)$, and for notational convenience we replace π_1 with π_1^*. Thus we must determine

$$\text{Hom}_{\mathbb{Q}_\ell[G_L]}(V_{\pi_1}(1), V_{\pi_2}(1))$$

for various π_i. This space is canonically isomorphic to

$$\text{Hom}_{\mathbb{Q}_\ell[G_L]}(V_{\pi_1}, V_{\pi_2}).$$

Lemma 2. Let (σ, V) and (τ, W) be n-dimensional representations of G over \mathbb{Q}_ℓ. Suppose H is an open normal subgroup of G, and $\tau|_H$ is irreducible. Then $\sigma|_H \cong \tau|_H$ iff $\sigma \cong \tau \otimes \phi$, for some $\phi : G \rightarrow \mathbb{Q}_\ell^*$, trivial on H.

Proof. Fixing bases for V and W, we view σ and τ as maps from G into $\text{GL}_n(\mathbb{Q}_\ell)$. Suppose there exists $A \in \text{GL}_n(\mathbb{Q}_\ell)$ such that

$$\sigma(h) = A\tau(h)A^{-1}$$

for all $h \in G$. Then for $h \in H$:

$$\sigma(h) = A\tau(h)A^{-1} \text{ for all } h \in H.$$
for all $h \in H$. For any $g \in G$, define
\[
\phi(g) = \tau(g)^{-1}A^{-1}\sigma(g)A \in \text{GL}_n(\overline{Q}_\ell).
\]
Clearly $\phi(h) = 1$ for all $h \in H$. In fact $\phi(g)$ is a scalar for all $g \in G$. This follows because one computes directly that
\[
\phi(g)^{-1}\tau(h)\phi(g) = \tau(h)
\]
using the fact that H is normal in G. Because $\tau|_H$ is irreducible, Schur’s lemma implies that $\phi(g) \in \text{Q}_\ell^*$. Thus $\sigma \cong \tau \otimes \phi$. The converse is clear. □

Lemma 3. Suppose either π_1 or π_2 is non-AI. Let $\sigma_i = \sigma_{\pi_i}$ as in (2). Then for any finite Galois extension L/E,
\[
\text{Hom}_{\text{Gal}(L/E)}(V_{\pi_1}, V_{\pi_2}) = \begin{cases}
\text{Q}_\ell & \text{if } \sigma_1 \cong \sigma_2 \otimes \phi \text{ for some character } \phi \\
0 & \text{otherwise.}
\end{cases}
\]

Proof. If for example π_1 is non-AI, then $(V_{\pi_1}, \rho_{\pi_1,L})$ is an irreducible representation of G_L of dimension 2 or 3. Then the Q_ℓ-dimension of the above space is the multiplicity of $\rho_{\pi_1,L}$ in $\rho_{\pi_2,L}$ by Schur’s lemma. Because the dimension of $\rho_{\pi_2,L}$ is ≤ 3, this multiplicity can only be 0 or 1. In the latter case, π_2 must also be non-AI, and $\rho_{\pi_1,L} \cong \rho_{\pi_2,L}$, which by the previous lemma occurs if and only if
\[
\rho_{\pi_1} \cong \rho_{\pi_2} \otimes \phi,
\]
for some character $\phi : G \to \text{Q}_\ell^*$, trivial on G_L. By the relationship between σ_i and ρ_{π_i} and strong multiplicity one for $\text{GL}(n)$, this is equivalent to $\sigma_1 \cong \sigma_2 \otimes \phi$, where we identify ϕ with the character of A_E^* obtained by pulling back the Artin map:
\[
A_E^*/E^* \to \text{Gal}(L/E)^{ab} \xrightarrow{\phi} \text{Q}_\ell^* \xrightarrow{\varepsilon} \text{C}^*.
\]

We say that a Tate class in $H^2(S_1)(1) \otimes H^2(S_2)(1)$ is a new Tate class if it is not a tensor product of Tate classes on the two factors. Because the Tate conjecture is known for each surface, the Tate conjecture for codimension-2 cycles on $S_1 \times S_2$ depends on finding algebraic cycles for the new Tate classes.

In light of Theorem 2, the above lemma immediately implies the following:

Theorem 3. Let π_1 and π_2 be cuspidal and cohomological for S_1 and S_2 respectively. Then:

1. If exactly one of π_1, π_2 is AI, then $H(\pi_1)(1) \otimes H(\pi_2)(1)$ contains no Tate classes.

2. If π_1 and π_2 are both non-AI, then $H(\pi_1)(1) \otimes H(\pi_2)(1)$ contains a Tate class if and only if $\sigma_1^* \cong \sigma_2 \otimes \phi$ for some finite order Hecke character ϕ of E. In this case, the subspace of Tate classes has the
same dimension as $\pi_1^{K_1} \otimes \pi_2^{K_2}$, and all such Tate classes are new and defined over the abelian extension of E defined by ϕ.

3. Tate Classes in the AI Case

It remains to consider the cases where π_1 and π_2 are both AI. By symmetry, we can assume $d(\pi_1) \leq d(\pi_2) \leq 3$. Thus there are six cases, which we refer to as $(d(\pi_1), d(\pi_2))$. The cases where $d(\pi_2) = 3$ are complicated by the possibility that σ_{π_2} (or σ_{π_1}) could be AI from a non-normal cubic extension.

As could be expected, the new Tate classes coming from AI representations are generally not defined over abelian extensions of E.

The $(1,1)$ case can be handled exactly as in the non-AI case, and the second statement of the above theorem applies here to characterize the Tate classes, with the exception that these may be old Tate classes. (By Theorem 2, this is the only case which contributes old Tate classes).

For the general case, let M/E be a field extension of degree ≤ 3, and let $\phi : G_M \to \mathbb{Q}_\ell^\ast$ be a continuous character. Let $\rho = \text{Ind}_{E}^{M}(\phi)$. We review the fact that if ϕ is replaced by any of its Galois conjugates, the resulting induced representation is isomorphic to ρ. First suppose M/E is Galois, and let $\tau \in G - G_M$. Then

$$\rho_M = \begin{cases}
\phi \oplus \phi^\tau & \text{if } [E : M] = 2 \\
\phi \oplus \phi^\tau \oplus \phi^\tau^2 & \text{if } [E : M] = 3,
\end{cases}$$

where $\phi^\tau(\sigma) = \phi(\tau^{-1}\sigma\tau)$. Any of the characters $\phi, \phi^\tau, \phi^\tau^2$ can be used to define ρ, i.e.

$$\rho = \text{Ind}_{E}^{M}(\phi) \cong \text{Ind}_{E}^{M}(\phi^\tau) \cong \text{Ind}_{E}^{M}(\phi^\tau^2).$$

The same statement is true in the case where M/E is a non-normal cubic extension. In this case, let \tilde{M} be the Galois closure of M over E, so that $G/G_{\tilde{M}} \cong S_3$. Let $\tau \in G$ be an element which has order 3 in this quotient. Then

$$\rho_{\tilde{M}} = \phi \oplus \phi^\tau \oplus \phi^\tau^2.$$

Here the characters on the right are characters of $G_{\tilde{M}}$; although ϕ extends to G_M, this is not the case for ϕ^τ and ϕ^τ^2 since G_M is not a normal subgroup of G. However it is easy to see that ϕ^τ extends to $G_{\tau(M)} = \tau G_{\tilde{M}} \tau^{-1}$, and ϕ^τ^2 extends to $G_{\tau^2(M)}$. In this way we have

$$\rho = \text{Ind}_{E}^{M}(\phi) \cong \text{Ind}_{\tau(M)}^{\tilde{M}}(\phi^\tau) \cong \text{Ind}_{\tau^2(M)}^{\tilde{M}}(\phi^\tau^2).$$

Theorem 4. Suppose π_1 and π_2 are both AI, so that $\sigma_i = AI_{E_{M_i}}^E(\phi_i)$ for algebraic Hecke characters ϕ_i of fields M_i of degree $d(\pi_i)$ over E. Let \tilde{M} be the normal closure of M_1M_2 over E. Then $H(\pi_1)(1) \otimes H(\pi_2)(1)$ contains a Tate class if and only if

$$(\phi_2)^{-1}_{\tilde{M}} = (\phi_1)_{\tilde{M}} \otimes \theta$$
for some finite order Hecke character θ of \widetilde{M}. (The subscript \widetilde{M} denotes base change). The corresponding Tate classes are defined over the smallest field L on which θ is trivial.

Proof. Identifying ϕ_i with Galois characters by class field theory, we have $\rho_1 = \text{Ind}^E_{M_1}(\phi_1)$ and $\rho_2 = \text{Ind}^E_{M_2}(\phi_2)$. Suppose $\text{Hom}_L(\rho_1, \rho_2) \neq 0$. Enlarging L if necessary, we may assume $\widetilde{M} \subset L$ and that L/\widetilde{M} is a normal extension. Then as representations of G_L, ρ_1 and ρ_2 split into sums of characters. At least one of the characters coming from ρ_1_L must equal one of those coming from ρ_2_L. By the preceding discussion, we do not lose generality if we assume $\phi_1_L = \phi_2_L$.

Then by Lemma 2,

$$\phi_{2\widetilde{M}} = \phi_{1\widetilde{M}} \otimes \theta,$$

for some character θ of $G_{\widetilde{M}}$ which is trivial on G_L. This is equivalent to the assertion in the theorem (replacing ρ_1 by ρ_1^* amounts to replacing ϕ_1 by ϕ_1^{-1}).

Conversely, given that $(\phi_2)_{\widetilde{M}} = (\phi_1)_{\widetilde{M}} \otimes \theta$, it is easy to see that there is a nonzero intertwining operator from ρ_1_L to ρ_2_L for any L containing \widetilde{M} and on which θ is trivial. \blacksquare

When ρ_1 is one-dimensional, we can refine the above condition:

Theorem 5. Suppose $d(\pi_1) = 1$ and π_2 is AI. Then $H(\pi_1)(1) \otimes H(\pi_2)(1)$ contains a new Tate class if and only if

$$\sigma_2 = AI^E_M((\sigma_1^{-1})_M \otimes \theta)$$

for some finite order Hecke character θ of M.

Proof. We will assume $d(\pi_2) = 3$ and that σ_2 is AI from a non-normal cubic extension M/E, the other cases being easier. Thus let $\phi: G_M \to \overline{\mathbb{Q}}^*$ be an algebraic Hecke character, and let $\rho_2 = \text{Ind}^E_M(\phi)$. Suppose $\text{Hom}_L(\rho_1, \rho_2) \neq 0$. Let \widetilde{M} be the normal closure of M over E. Enlarging L, we assume that $\widetilde{M} \subset L$ is a normal extension. Then as in the proof of the above theorem, we have

$$\rho_{1\widetilde{M}} = \phi_{\widetilde{M}} \otimes \theta^{-1}$$

for some finite order character θ of $G_{\widetilde{M}}$. Extend θ to a character of G_M by the formula

$$\theta(\sigma) = \phi(\sigma)\rho_1(\sigma^{-1}), \quad \sigma \in G_M.$$

Then $\rho_{1M} = \phi \otimes \theta^{-1}$, so

$$\rho_2 = \text{Ind}^E_M(\rho_{1M} \otimes \theta),$$

which gives the desired formula. The converse is clear. \blacksquare

Acknowledgements: I would like to thank Don Blasius and the referee for their helpful comments. This work was partially supported by NSA grant MDA904-03-1-0090.
REFERENCES

[BR] Blasius, D. and Rogawski, J., *Tate Classes and Arithmetic Quotients of the Two-Ball*, in [LR].

[Ro2] Rogawski, J., *Analytic expression for the number of points mod p*, in [LR].