(1) Let G be a group of order 15. Show that G contains an element of order 3.

(2) Let G be a group, and let $N < G$ be a subgroup of index 2. Prove that N is normal in G.

(3) Let Z be the center of a group G (recall $Z < G$). Prove that if the group G/Z is cyclic, then G is abelian.

(4) Let G be a group and let G' be the subgroup generated by the set
\[\{aba^{-1}b^{-1} | a, b \in G \}. \]
This is the commutator subgroup of G. It measures the degree to which G fails to be abelian. (E.g. $G' = \{e\}$ if G is abelian.)

(a) Prove that $G' < G$ and that G/G' is abelian.

(b) If $H < G$ and G/H is abelian, prove that $G' < H$. (Thus G/G' is the maximal abelian quotient of G.)

(5) Determine all homomorphisms from Z to Z.