Set 12 → Differential Calculus

(15) a) Using the definition of the derivative seen in class, show that if \(f(x) = \frac{1}{x} \), then \(f'(x_0) = -\frac{1}{x_0^2} \), for \(x_0 \neq 0 \).

(15) b) Let \(f \) be a function such that \(|f(x)| \leq x^2 \) for all \(x \). Prove that \(f \) is differentiable at 0. (Note that we must have \(f(0) = 0 \).)

(15) c) Give an example of a function \(f \) for which \(\lim_{x \to \infty} f(x) \) exists, but \(\lim_{x \to \infty} f'(x) \) does not exist.

(10) d) Prove that if \(\frac{a_0}{1} + \frac{a_1}{2} + \ldots + \frac{a_n}{n+1} = 0 \), then \(a_0 + a_1x + \ldots + a_nx^n = 0 \) for some \(x \in [0, 1] \).

(15) e) Prove that \(\frac{1}{9} < \sqrt{66} - 8 < \frac{1}{8} \).

(10) f) Suppose \(h \) is a function such that \(h'(x) = \sin^2(\sin(x + 1)) \) and \(h(0) = 3 \). Find \((h^{-1})'(3)\).

(+5) *g) Find a formula for \((f^{-1})''(x)\).

(+10) *h) Show that \(f \) is convex on an interval if and only if for all \(x \) and \(y \) in the interval we have

\[
f(tx + (1-t)y) < tf(x) + (1-t)f(y), \quad \text{for } 0 < t < 1.
\]

(This is just a restatement of the definition of convexity seen in class, but a useful one, which is actually used more often in more advanced situations.)

(20) i) 1) Find the Taylor polynomial of degree 3 at \(x_0 = 0 \) for \(f(x) = e^{e^x} \). 2) Find the Taylor polynomial of degree 4 at \(x_0 = 0 \) for \(f(x) = x^5 + x^3 + x \).

(+10) *j) Suppose that \(a_k \) and \(b_k \) are the coefficients in the Taylor polynomials at \(x_0 \) of \(f \) and \(g \), respectively. In other words, \(a_k = f^{(k)}(x_0)/k! \) and \(b_k = g^{(k)}(x_0)/k! \). Find the coefficients \(c_k \) of the Taylor polynomials at \(x_0 \) of 1) \(f + g \), and 2) \(f' \), in terms of the \(a_k \)'s and the \(b_k \)'s.