Multiple Polylogarithms
and
Multiple Zeta Values:

Some Results and Conjectures

David M. Bradley, University of Maine

http://www.umeat.maine.edu/faculty/bradley/index.html

February 28, 2003

The Dilogarithm

\[\text{Li}_2(x) = \int_0^x \frac{t}{1-t} \log(1-t)^{-1} \, dt \]
\[= \sum_{n=1}^\infty \frac{x^n}{n^2}, \quad |x| \leq 1. \]

- arises in the multiple integration of rational forms, eg.
 \[\int_0^x \int_0^y \frac{adsdt}{1-ast} = \text{Li}_2(axy) \]
- QED, scattering of light
- connection with the Gaussian hypergeometric function:
 \[\text{Li}_2(x) = \lim_{\varepsilon \to 0^+} e^{-2} [\text{F}_1(\varepsilon; \varepsilon; 1; x) - 1] \]

Polylogarithms

\[\text{Li}_1(x) = \log(1-x)^{-1} \]
\[= \sum_{n=1}^\infty \frac{x^n}{n}, \quad |x| < 1. \]

\[\text{Li}_s(x) = \int_0^x t^{1-s} \log(1-t)^{-1} \, dt, \quad 1 < s \in \mathbb{Z} \]
\[= \sum_{n=1}^\infty \frac{x^n}{n^s}, \quad |x| \leq 1. \]

\[\text{Li}_s(1) = \sum_{n=1}^\infty \frac{1}{n^s} = \zeta(s). \]

Inverting Pascal Matrices

Let \(a \) be real and let \(P(a) \) be the matrix whose \((m, n)\) entry is \(\binom{m}{n} a^{m-n} \).

\[P(a) := \begin{bmatrix}
 1 & 1 & 1 & \\
 a & 2a & 3a & \\
 a^2 & 3a^2 & 3a & \\
 \vdots & \vdots & \vdots &
\end{bmatrix} \]

Then \(I = P(0) \) is the identity matrix and

\[P(a)P(b) = P(a+b). \]

\textbf{Theorem 1 (Aggarwalla and Lamoureaux)} Let \(\lambda \neq 1 \). The inverse of \(I - \lambda P(a) \) has \((m, n)\) entry

\[\begin{cases}
 \frac{1}{(1-\lambda)}, & \text{if } m = n; \\
 \binom{m}{n} a^{m-n} \text{Li}_{m-n}(\lambda), & \text{if } m \neq n.
\end{cases} \]
Multiple Polylogarithms

For positive integer k, let

\begin{align*}
 s_1, \ldots, s_k &\in \mathbb{Z}^+, \\
 z_1, \ldots, z_k &\in \mathbb{C}, \\
 |z_j| &\leq 1 \text{ for } 1 \leq j \leq k.
\end{align*}

\[L_{s_1, \ldots, s_k}(z_1, \ldots, z_k) := \sum_{n_1, \ldots, n_k > 0} \prod_{j=1}^{k} z_j^{n_j} n_j^{-s_j}, \]

\[\zeta(s_1, s_2, \ldots, s_k) := L_{s_1, s_2, \ldots, s_k}(1, 1, \ldots, 1). \]

\[k = 1 : \begin{cases}
 L_s(z) = \sum_{n=1}^{\infty} z^n n^{-s}, \\
 \zeta(s) = L_s(1).
\end{cases} \]

\[k = 2 : \quad \zeta(s, t) = \sum_{n=1}^{\infty} n^{-s} \sum_{j=1}^{n-1} j^{-t} \]

One can also study $\zeta(s_1, \ldots, s_k)$ with complex arguments $s_1, \ldots, s_k \in \mathbb{C}$.

It can be shown that the multiple series is absolutely convergent if

\[\sum_{j=1}^{m} \Re(s_j) > m, \quad m = 1, 2, \ldots, k. \]

It is then natural to inquire about

- analytic continuation,
- trivial zeros,
- values at the non-positive integers.

Multiple Zeta Functions

These are obtained when each $z_j = 1$ in the multiple polylogarithm.

\[\zeta(s_1, \ldots, s_k) := \sum_{n_1, \ldots, n_k > 0} \prod_{j=1}^{k} n_j^{-s_j}. \]

Their study goes back to Euler ($k = 2$):

\[2\zeta(m, 1) = m\zeta(m + 1) - \sum_{j=1}^{m-2} \zeta(m - j)\zeta(j + 1), \]

where $2 \leq m \in \mathbb{Z}$.

An extremely difficult problem is to classify all relations that exist between values of multiple zeta functions ("multiple zeta values") at positive integer arguments.

Define the depth of a multiple polylogarithm or multiple zeta function to be the number k of nested summations.

When can a nested sum of depth k be expressed (say polynomially with rational coefficients) in terms of sums with depth less than k?

Settling this question in complete generality is currently a hopeless prospect.

eg. Is $\zeta(5, 3)/\zeta(5)\zeta(3)$ irrational?
Reductions at Arbitrary Depth

One of the earliest nontrivial successes at arbitrary depth was Broadhurst’s settling of Zagier’s conjecture

\[
\zeta(3,1,3,1,\ldots,3,1) = 4^{-n} \zeta(4,4,\ldots,4) \quad \text{for } 0 < n \in \mathbb{Z}.
\]

Abbreviate the first two members by \(\zeta(\{3,1\}^n) \) and \(4^{-n} \zeta(\{4\}^n) \).

More generally, for real \(x \) with \(0 \leq x \leq 1 \), let

\[
\zeta(x_1,\ldots,x_k) := \lim_{\varepsilon \to 0} \frac{\zeta(x_1,\ldots,x_k,1,\ldots,1)}{\pi^k} = \sum_{n_1 \geq \ldots \geq n_k > 0} x^{n_1} \prod_{j=1}^k n_j^{-s_j}.
\]

Theorem 2

\[
\sum_{n=0}^{\infty} \zeta(\{3,1\}^n) t^{4n} = 2F_1(z,-z;1;x)_{2F_1}(iz,-iz;1;z),
\]

where \(z = (1+i)t/2 \).

When \(x = 1 \), Theorem 2 reduces to

\[
\sum_{n=0}^{\infty} \zeta(\{3,1\}^n) t^{4n} = \frac{1}{\Gamma(1+z)\Gamma(1-z)} \cdot \frac{1}{\Gamma(1+iz)\Gamma(1-iz)} = \frac{\sin(\pi z) \cdot \sinh(\pi z)}{\pi z} \cdot \frac{\sinh(\pi z)}{\pi z} = \sum_{n=0}^{\infty} \frac{2(\pi t)^{4n}}{(4n+2)!}.
\]

Factoring Solutions to Differential Equations

Theorem 3 Let \(f \) and \(g \) be suitably differentiable functions of a single variable, and let \(t \) be a free parameter. Define \(D_f = f(x) d/dx \), \(D_g = g(x) d/dx \) and suppose that

\[
(D_f D_g + t) u = 0 \quad (1)
\]

\[
(D_f D_g - t) v = 0. \quad (2)
\]

Then

\[
(D_f^2 D_g^2 + 4t^2) uv = 0. \quad (3)
\]

Moreover, if \(u_1 \) and \(u_2 \) are linearly independent solutions to (1) and if \(v_1 \) and \(v_2 \) are linearly independent solutions to (2) then \{\(u_1 v_1, u_1 v_2, u_2 v_1, u_2 v_2 \)\} are linearly independent solutions to (3).

Proof Sketch. Verify that \(u D_g^2 v + v D_g^2 u = 0 \), and then calculate

\[
D_f^2 D_g^2 (uv) = 2D_f^2 (D_g u)(D_g v) = 2t[v(D_f D_g u) - u(D_f D_g v)] = -4t^2 uv.
\]

Linear independence follows from the following modified Wronskian determinate identity:

\[
\begin{vmatrix}
D_g u_1 v_1 & D_g u_2 v_1 & D_g u_1 v_2 & D_g u_2 v_2 \\
D_g^2 u_1 v_1 & D_g^2 u_2 v_1 & D_g^2 u_1 v_2 & D_g^2 u_2 v_2 \\
D_f^2 u_1 v_1 & D_f^2 u_2 v_1 & D_f^2 u_1 v_2 & D_f^2 u_2 v_2 \\
D_f D_g^2 u_1 v_1 & D_f D_g^2 u_2 v_1 & D_f D_g^2 u_1 v_2 & D_f D_g^2 u_2 v_2
\end{vmatrix}
= 8t \begin{vmatrix}
D_g u_1 & u_2 \\
D_g u_2 & v_2
\end{vmatrix}^2 \begin{vmatrix}
v_1 & v_2 \\
v_1 & v_2
\end{vmatrix}^2.
\]

This identity follows by direct computation using the differential equations for \(u \) and \(v \).

\[\square \]
Applications

For $0 \leq x \leq 1$ and complex $z = (1 + i)t/2$, let
\[
\psi(z) := \Gamma'(z)/\Gamma(z),
\]
\[
Y_1(x, z) := 2 F_1(z, -z; 1; x),
\]
\[
Y_2(x, z) := (1 - x)2 F_1(1 + z, 1 - z; 2; 1 - x),
\]
\[
G(z) := \frac{1}{i} \{\psi(1 + iz) + \psi(1 - iz) - \psi(1 + z) - \psi(1 - z)\}.
\]
Then (Trans. AMS)
\[
\sum_{n=0}^{\infty} t^{4n} \zeta_x(\{3, 1\}^n) = Y_1(x, z)Y_1(x, iz),
\]
and (Compositio Mathematica, to appear)
\[
z^2 \sum_{n=0}^{\infty} t^{4n} \zeta_x(3, \{1, 3\}^n) = G(z)Y_1(x, z)Y_1(x, iz)
\]
\[
- \frac{Y_1(x, iz)Y_2(x, z)}{4Y_1(1, z)} + \frac{Y_1(x, z)Y_2(x, iz)}{4Y_1(1, iz)}
\]
define entire functions of z.

Entirely in z turns out to be a simple consequence of the identity
\[
\frac{(1 + \alpha)_n}{n!} 2 F_1 \left(-n, 1 + \alpha + \beta + n \left| \frac{1 - y}{2} \right. \right) = \frac{(-1)^n(1 + \beta)_n}{n!} 2 F_1 \left(-n, 1 + \alpha + \beta + n \left| \frac{1 + y}{2} \right. \right)
\]
for the Jacobi polynomials.

Here,
\[
(a)_n := \frac{\Gamma(a + n)}{\Gamma(a)} = \prod_{j=1}^{n} (a + j - 1)
\]
is the rising factorial (Pochhammer symbol).

Thus the apparent singularities in the generating functions are all removable.

More Applications

Let $s = (1 + z)/2$ and $z = (1 + i)t/2$,
\[
\zeta_x(\{1, 1\}^n) := Li_{1, \ldots, 1}(-x, 1, \{-1, 1\}^{n-1}),
\]
\[
\zeta_x(\{1, 1\}^n) := Li_{1, \ldots, 1}(-x, \{1, -1\}^n),
\]
\[
U(s, z) := 2 F_1(z, -z; 1; s)
\]
\[
- z(1 - s)2 F_1(1 + z, 1 - z; 2; 1 - s),
\]
\[
A(z) := \frac{\sqrt{\pi}}{\Gamma(1/2)\Gamma(1/2 - z/2)}.
\]

Then (Compositio Mathematica, to appear):
\[
\sum_{n=0}^{\infty} t^{2n} \zeta_x(\{1, 1\}^n) + t^{2n+1} \zeta_x(\{1, 1\}^n)
\]
\[
= \frac{U(s, -z)U(s, iz)}{A(-z)A(iz)}
\]
defines an entire function of z.

Specialize $x = 1$. It follows that for all positive integers n,
\[
\zeta(\{3, 1\}^n) = 4^{-n} \zeta(\{4\}^n) = \frac{2\pi^{4n}}{(4n + 2)!},
\]
\[
\zeta(3, \{1, 3\}^n) = 4^{-n} \sum_{k=0}^{n} \zeta(4k + 3)\zeta(\{4\}^{n-k})
\]
\[
= \sum_{k=0}^{n} \frac{2\pi^{4k}}{(4k + 2)!} \left(\frac{1}{4}\right)^{n-k} \zeta(4n - 4k + 3),
\]
\[
\zeta(2, \{1, 3\}^n) = 4^{-n} \sum_{k=0}^{n} (-1)^k \zeta(\{4\}^{n-k}) \{4k + 1\}
\]
\[
\times \zeta(4k + 2) - 4 \sum_{j=1}^{k} \zeta(4j - 1)\zeta(4k - 4j + 3)\}.
\]

12

13

14

15
Entirely in \(z \) is again a simple consequence of the identity

\[
\frac{(1 + \alpha)n}{n!} _2F_1\left(\begin{array}{c} -n, 1 + \alpha + \beta + n \\ 1 + \alpha \end{array} \left| \frac{1 - y}{2} \right. \right) = \frac{(-1)^n(1 + \beta)n}{n!} _2F_1\left(\begin{array}{c} -n, 1 + \alpha + \beta + n \\ 1 + \beta \end{array} \left| \frac{1 + y}{2} \right. \right)
\]

for the Jacobi polynomials.

Thus the apparent singularities in the generating functions are again all removable.

The Simplex Integral

There is a representation, due to Kontsevich, for multiple zeta values in terms of a simplex integral. If \(s_1, \ldots, s_k \) are positive integers, then

\[
\zeta(s_1, \ldots, s_k) = \int \prod_{j=1}^{k} \left(\frac{t_{(j)}^{s_j-1}}{1 - t_{(j)}^{s_j}} \right) \frac{dt_{(j)}}{t_{(j)}^{s_j}},
\]

where the integral is over the simplex

\[1 > t_{(1)}^{(1)} > \cdots > t_{(1)}^{(s_1)} > \cdots > t_{(k)}^{(1)} > \cdots > t_{(k)}^{(s_k)} > 0, \]

and is abbreviated by

\[
\int_0^1 \prod_{j=1}^{k} a^{s_j-1} b, \quad a = dt/t, \quad b = dt/(1 - t).
\]
eg.
\[
\zeta(2, 1) = \sum_{n>m>0} n^{-2} m^{-1} \\
= \sum_{k=1}^{\infty} \sum_{j=1}^{\infty} (k + j)^{-2} k^{-1} \\
= \sum_{k=1}^{\infty} k^{-1} \sum_{j=1}^{\infty} (k + j)^{-1} \int_0^1 t^{k+j-1} dt \\
= \sum_{k=1}^{\infty} k^{-1} \int_0^1 t^{-1} \sum_{j=1}^{\infty} \int_0^t u^{k+j-1} du dt \\
= \int_0^1 t^{-1} \int_0^t (1 - u)^{-1} \sum_{k=1}^{\infty} k^{-1} u^k du dt \\
= \int_0^1 t^{-1} \int_0^t (1 - u)^{-1} \sum_{k=1}^{\infty} \int_0^u v^{k-1} dv du dt \\
= \int_0^1 t^{-1} \int_0^t (1 - u)^{-1} \int_0^u (1 - v)^{-1} dv du dt \\
= \int \frac{dt}{t} \frac{du}{1 - u} \frac{dv}{1 - v} \\
= \int_0^1 ab^2. \]

Duality

Let \(s_j \) and \(r_j \) be non-negative integers (1 \(\leq j \leq k \)), and let
\[
m = \sum_{j=1}^{k} (s_j + 2 + r_j).
\]

Then
\[
\zeta(s_1 + 2, \{1\}^{r_1}, \ldots, s_k + 2, \{1\}^{r_k}) \\
= \int_0^1 \prod_{j=1}^{k} a^{s_j + 1} b^{r_j + 1} \\
= \int \prod_{1 > t_1 > \cdots > t_m > 0} \prod_{j=1}^{m} f_j(t_j) dt_j \\
= \int \prod_{1 > u_1 > \cdots > u_l > 0} \prod_{j=1}^{l} f_j(u_j) du_j, \quad u_j = 1 - t_j \\
= \int_0^1 \prod_{j=k}^{1} a^{r_j + 1} b^{s_j + 1} \\
= \zeta(r_k + 2, \{1\}^{s_k}, \ldots, r_1 + 2, \{1\}^{s_1}), \]
originally conjectured by Hoffman.

This is the only known non-trivial instance of an equivalence between two multiple zeta values.

A related integral representation enabled Y. Ohno to prove the following beautiful generalization of the duality identity. Let
\[
S(p, m) := \sum_{c_1 + \ldots + c_n = m} \zeta(p_1 + c_1, \ldots, p_n + c_n),
\]
where the sum is over all non-negative integers \(c_1, \ldots, c_n \) which sum to \(m \).

As in the duality identity, define the dual argument lists
\[
p := (s_1 + 2, \{1\}^{r_1}, \ldots, s_k + 2, \{1\}^{r_k})
\]
and
\[
p' := (r_k + 2, \{1\}^{s_k}, \ldots, r_1 + 2, \{1\}^{s_1}).
\]

Then \(S(p, m) = S(p', m) \).

When \(m = 0 \), Ohno’s result reduces to duality.

Another interesting specialization is obtained by taking \(p = (k + 1) \) and \(m = n - k - 1 \).

One then deduces Granville’s theorem, originally conjectured independently by Courtney Moen and Michael Schmidt:
\[
\sum_{s_1 + \ldots + s_k = n} \zeta(s_1, \ldots, s_k) = \zeta(n),
\]
where the sum is over all positive integers \(s_1, \ldots, s_k \) which sum to \(n \) and \(s_1 > 1 \).
The MacMahon Integral

Major Percy MacMahon's Omega operator discards terms with non-positive exponents from formal Laurent series in $\lambda_1, \ldots, \lambda_k$. Thus, if $0 \leq x_1, \ldots, x_k \leq 1$, then

$$\operatorname{Li}_{s_1, \ldots, s_k}(x_1, \ldots, x_k) = \sum_{n_1 > \cdots > n_k > 0} \frac{k}{\prod_{j=1}^k x_j n_j^{-s_j}}$$

$$= \sum_{n_1 > \cdots > n_k > 0} \frac{k}{\prod_{j=1}^k n_j^{-s_j}} (x_j \lambda_j \lambda_{j-1}^{-1})^{n_j}, \quad \lambda_0 := 1$$

$$= \frac{k}{\prod_{j=1}^k \Pi_{j=1}^{s_j-1} u_j^{(j)} \left(\prod_{r=1}^{u_j^{(j)}} \frac{y_j^m}{u_j^{(j)}} \right)}$$

Thus, we have

$$\operatorname{Li}_{s_1, \ldots, s_k}(x_1, \ldots, x_k) = \Omega \prod_{j=1}^k \frac{u_j^{(j)}}{u_j^{(j)}}$$

$$= \sum_{m_1 > \cdots > m_k > 0} \frac{k}{\prod_{j=1}^k u_j^{(j)}}$$

$$= \frac{1}{\Pi_{j=1}^k \frac{y_j}{1 - y_j}}$$

$$= \frac{1}{\Pi_{j=1}^k \frac{y_j}{1 - y_j}}$$

Shuffles

The simplex integral representation leads to a shuffle multiplication rule satisfied by multiple zeta values.

Suppose that $x, y \in \mathbb{R}$ and $f_j : [y, x] \to \mathbb{R}$ are integrable functions for $j = 1, 2, \ldots, n$.

It is customary to make the abbreviation

$$\int_y^x \prod_{j=1}^n \alpha_j := \prod_{x > t_1 > \cdots > t_n > y} \int_{x}^{t_1} \cdots \int_{t_n}^{t_{n-1}} f_j(t_j) dt_j$$

Contraction: the integral is equal to 1 if $n = 0$ regardless of the values of x and y.
Let \(\sigma \) be a permutation of \(\{1, 2, \ldots, m + n\} \) such that \(\sigma^{-1}(j) < \sigma^{-1}(k) \) for all \(1 \leq j < k \leq m \) and \(m + 1 \leq j < k \leq m + n \).

Denote the set of all \(\binom{m+n}{n} \) such permutations \(\sigma \) by \(\text{Shuff}(m,n) \).

Then

\[
\left(\prod_{j=1}^{y} \prod_{j=m+1}^{x} a_j \right) \left(\prod_{j=1}^{y} \prod_{j=m+1}^{x} a_j \right) = \sum_{\sigma \in \text{Shuff}(m,n)} \prod_{j=1}^{m+n} a_{\sigma(j)},
\]

and so define the shuffle product \(\omega \) by

\[
\left(\prod_{j=1}^{m} a_j \right) \omega \left(\prod_{j=m+1}^{m+n} a_j \right) \overset{\text{def}}{=} \sum_{\sigma \in \text{Shuff}(m,n)} \prod_{j=1}^{m+n} a_{\sigma(j)}.
\]

The Shuffle Algebra

Let \(A \) be a finite set and let \(A^* \) denote the free monoid generated by \(A \).

Regard \(A \) as an alphabet and the elements of \(A^* \) as words formed by concatenating any finite number of letters (repetitions permitted) from the alphabet \(A \).

By linearly extending the concatenation product to the set \(Q\{A\} \) of rational linear combinations of elements of \(A^* \), we obtain a non-commutative polynomial ring with indeterminates the elements of \(A \) and with multiplicative identity \(1 \) denoting the empty word.

The shuffle product is alternatively defined first on words by the recursion

\[
\begin{align*}
1 \omega \omega & = \omega \omega 1 = \omega, \\
au \omega bv & = a(u \omega bv) + b(u \omega v),
\end{align*}
\]

\((\forall a, b \in A \text{ and } \forall u, v, w \in A^*)\) and then extended linearly to \(Q\{A\} \).

eg.

\[(ab - 2b) \omega c = ab \omega c - 2b \omega c = abc + abc + abc - 2bc - 2bc - 2cb\]

One checks that the shuffle product so defined is associative and commutative, and thus \(Q\{A\} \) equipped with the shuffle product becomes a commutative \(Q \)-algebra, denoted \(\text{Sh}_{Q}[A] \).

In what follows, if \(A \) is an alphabet and \(u, v \in A^* \), we’ll denote by \(\{u \omega v\} \) the multi-set of words appearing (with multiplicity) in the expansion of \(u \omega v \).

For example, suppose \(A = \{a, b\} \). Since \(ab \omega ab = 4aabb + 2abab \), we have

\[
\{ab \omega ab\} = \{abab, abab, aabb, aabb, aabb\},
\]

which, as a multi-set, properly contains \(\{abab, aabb\} \).

Theorem 4 (Euro. J. Comb., to appear) Let \(r \) be a positive integer, let \(A \) be an alphabet, and let \(a_1, a_2, \ldots \in A \) be such that \(a_r + m = a_m \) for all positive integers \(m \). Fix a positive integer \(n \), and define multi-sets \(S_0 = S_m = \{a_1 a_2 \cdots a_{2n}\} \), and

\[
S_k = \{a_1 a_2 \cdots a_k \omega a_1 a_2 \cdots a(2n-k)\},
\]

for \(k = 1, 2, \ldots, 2n - 1 \). Then \(S_{k-1} \subseteq S_k \) for \(k = 1, 2, \ldots, n \), and \(S_{k+1} \subseteq S_k \) for \(k = n, n+1, \ldots, 2n-1 \).
Corollary 1 Let \(n \) be a non-negative integer, and let \(\{a, b\} \) be an alphabet. Then
\[
\sum_{k=-n}^{n} (-1)^k [(ab)^{n+k} \omega (ab)^{n-k}] = (4a^2b^2)^n.
\]

Corollary 2 Let \(n \) be a non-negative integer. Then
\[
\sum_{k=-n}^{n} (-1)^k \zeta(\{2\}^{n+k}\zeta(\{2\}^{n-k}) = 4^n \zeta(3,1)^n).
\]

Proof of Corollary 1. We prove the trivially equivalent convolution formula
\[
\sum_{k=0}^{2n} (-1)^n (ab)^k \omega (ab)^{2n-k} = (4a^2b^2)^n.
\]
In Theorem 4, let \(A = \{a, b\} \) and \(r = 2 \). In view of the multi-set inclusions indicated by Theorem 4, there must be
\[
\sum_{k=0}^{2n} (-1)^n (ab)^k |_{S_k} = \sum_{k=0}^{2n} (-1)^n h_{2k} = 4^n
\]
terms on each side of (4), counting multiplicity. Furthermore, the word \((a^2b^2)^n\) occurs \(4^n \) times in \(S_n \), since each \(a \) and each \(b \) can take two positions. Since \((a^2b^2)^n\) cannot occur in \(S_k \) for \(k \neq n \), (4) follows immediately.

One can similarly prove an intriguing shuffle factorization due to Broadhurst.

Let \(i^2 = -1 \). Then in the formal power series ring \((\text{Sh}Q[a,b])[\![z]\!]\), we have the identity
\[
A \left(\frac{z}{1-i} \right) \omega A \left(\frac{z}{1+i} \right) = M(z)
\]
where
\[
A(z) = \sum_{n=0}^{\infty} (cz)^n(1+cz)
\]
\[
= 1 + cz + cbz^2 + cbcz^3 + cbcz^4 + \ldots
\]
and
\[
M(z) = \sum_{n=0}^{\infty} (cz^3)^n(1 + cz + c^2 z^2 + c^2 b z^3)
\]
\[
= 1 + cz + c^2 z^2 + c^2 b z^3 + c^2 b^2 z^4 + \ldots
\]

Other shuffle convolution formulae can be established in a similar manner.

For example, if \(\{a, b\} \) is an alphabet and \(n \) is a positive integer, then
\[
2 \sum_{k=-n}^{n} (-1)^k [(ab)^{n+k} \omega (ba)^{n-k}] = (4abba)^n + (4baab)^n.
\]

With a little more work, one can also establish a shuffle convolution formula for
\[
\sum_{k=-n}^{n} (-1)^k [(a^2b)^{n+k} \omega (a^2b)^{n-k}], \quad 1 \leq n \in \mathbb{Z},
\]
and as a consequence, a corresponding identity for
\[
\zeta(\{5,1\}^n) := \zeta(\overbrace{5,1,\ldots,5,1}^{2n} \omega), \quad 1 \leq n \in \mathbb{Z}.
\]

In principle, it should be possible to extend this approach to \(\zeta(\{2p+1,1\}^n) \) for any positive integers \(n \) and \(p \), but the shuffle convolution formulae become prohibitively complicated as \(p \) increases.

Let \(n \) be a positive integer. Observe that in \((a^4 b^2)^n\), every occurrence of \(a^4 \) after the first is separated on both sides by \(b^2 \), and hence there are \(2n-1 \) ways in which a single transposition of a letter \(b \) with an adjacent letter \(a \) can be performed. If we let \(\binom{2n-1}{k} \) denote the sum of the \(\binom{2n-1}{k} \) words obtained from \((a^4 b^2)^n\) by making \(k \) such transpositions, then we have the following result.

Theorem 5 Let \(n \) be a positive integer. Then
\[
\sum_{k=0}^{n} (-1)^k (a^2b)^n \omega (a^2b)^{n+k} = \sum_{k=1}^{3n} 2k \left[\binom{2n-1}{k} \right].
\]

Example. When \(n = 2 \), the right hand side of Theorem 5 is equal to
\[
18a^3 b^2 a^2 b a b + 144 a^4 b^2 a^4 b^2
+ 36(a^2 b a b a^3 b + a^3 b^2 b a^2 b^2 + a^4 b a b^2 b a b)
+ 72(a^4 b^2 a^3 b + a^5 b a b^2 a^2 b^2 + a^3 b a b^4 b^2).
\]
Definition 6 (EJC 5(1) 1998, #R38) For integers \(m \geq n \geq 0 \) let

\[S_{m,n} \]

denote the set of words occurring in the shuffle product

\[(ab)^n \cup (ab)^{m-n} \]

in which the subword \(a^2 \) appears exactly \(n \) times.

Let

\[T_{m,n} \]

be the sum of the \(\binom{m}{2n} \) distinct words in \(S_{m,n} \).

For all other pairs \((m,n) \) define \(T_{m,n} := 0 \).

eg. \(S_{3,1} = \{a^2b^3ab,a^2bab^2,aba^2b^2\} \), \(T_{3,1} = a^2b^2ab + a^2bab^2 + aba^2b^2 \). Each word in \(S_{3,1} \) occurs 4 times in \((ab) \cup (ab)^2 \).

Theorem 7 (JCTA 97 (2001) (1), 43–61) Let \(x \) and \(y \) be commuting indeterminates, and let \(m \) be a non-negative integer. In the commutative polynomial ring \((Sh\mathcal{Q}[a,b])[x,y] \) we have the shuffle convolution formula

\[
\sum_{k=0}^{m} \frac{x^k y^{m-k} [(ab)^k \cup (ab)^{m-k}]}{[m/2]!
= \sum_{n=0}^{m} \frac{(4xy)^n (x + y)^{m-2n} T_{m,n}}{[n/2]!}.
\]

Corollary 3 Let \(m \) be a non-negative integer. Then

\[
\sum_{k=-m}^{m} (-1)^k [(ab)^{m+k} \cup (ab)^{m-k}] = (4a^2b^2)^m.
\]

Corollary 4 Let \(m \) be a non-negative integer. Then

\[
\sum_{k=-m}^{m} (-1)^k \zeta((2)^{m+k})\zeta((2)^{m-k}) = 4^m \zeta(3,1)^m.
\]

Thus, if \(\tilde{s} = (m_0, m_1, \ldots, m_{2n}) \), then (following Broadhurst)

\[
Z(\tilde{s}) = \int_0^1 (ab)^{m_0} \prod_{k=1}^{n} (a^2b)((ab)^{m_{2k-1}}b(ab)^{m_{2k}})
= \zeta((2)^{m_0}, 3, (2)^{m_1}, 1, (2)^{m_2}, 3, (2)^{m_3}, 1, \ldots, 3, (2)^{m_{2n-1}}, 1, (2)^{m_{2n}}).
\]

The argument list consists of \(m_j \) consecutive twos inserted after the \(j \)th element of the string \(\{3,1\}^n \) for \(j = 0, 1, \ldots, 2n \).

It turns out that

\[
\sum_{\tilde{s} \in C_{2n+1}(m-2n)} Z(\tilde{s}) = \frac{2\pi^{2m}}{(2m+2)!} \left(\frac{m+1}{2n+1} \right),
\]

for all non-negative integers \(m \) and \(n \) with \(m \geq 2n \).
Theorem 8 Let m and n be non-negative integers with $m \geq 2n$. Then
\[
\sum_{\vec{s} \in C_{2n+1}(m-2n)} Z(\vec{s}) = \frac{2^{2m}}{(2m+2)!} \binom{m}{2n+1}.
\]

Corollary 5 Let n be a non-negative integer. Then
\[
\zeta(\{3,1\}^n) = \frac{2^{4n}}{(4n+2)!}.
\]

Proof. Put $m = 2n$ in Theorem 8, and note that $Z(\{0\}^{2n+1}) = \zeta(\{3,1\}^n)$.

A more compelling formulation of Theorem 8 can be given as follows.

Again, let $\vec{s} = (m_0, m_1, \ldots, m_{2n})$ and put (following Broadhurst again)
\[
\mathcal{C}(\vec{s}) := Z(\vec{s}) + \sum_{j=1}^{2n} Z(m_j, m_{j+1}, \ldots, m_{2n}, m_0, \ldots, m_{j-1}).
\]

In other words, sum over all cyclic permutations of the argument list \vec{s}. Then
\[
\sum_{\vec{s} \in C_{2n+1}(m-2n)} \mathcal{C}(\vec{s}) = Z(m) \times |C_{2n+1}(m-2n)|
\]
\[
= \frac{\pi^{2m}}{(2m+1)!} \binom{m}{2n}
\]

is an equivalent formulation.

Theorem 9 Let m and n be non-negative integers with $m \geq 2n$. Then
\[
\sum_{\vec{s} \in C_{2n+1}(m-2n)} \mathcal{C}(\vec{s}) = Z(m) \times |C_{2n+1}(m-2n)|
\]
\[
= \frac{\pi^{2m}}{(2m+1)!} \binom{m}{2n}
\]

Corollary 6 If n is a non-negative integer, then
\[
\mathcal{C}(1,\{0\}^{2n}) = Z(2n+1).
\]

Broadhurst’s cyclic insertion conjecture can be restated as the assertion that
\[
\mathcal{C}(\vec{s}) = Z(m), \quad \forall \vec{s} \in C_{2n+1}(m-2n)
\]
and integers $m \geq 2n \geq 0$.

Theorem 9 reduces the problem to proving that $\mathcal{C}(\vec{s})$ is invariant for $\vec{s} \in C_{2n+1}(m-2n)$.

Conjecture: The invariance can be proved using only the shuffle property of multiple zeta values plus the known values $\zeta(\{2n\}^k)$.

Theorem 8 Let m and n be non-negative integers with $m \geq 2n$. Then
\[
\sum_{\vec{s} \in C_{2n+1}(m-2n)} Z(\vec{s}) = \frac{2^{2m}}{(2m+2)!} \binom{m+1}{2n+1}.
\]

Proof. It suffices to prove that with $a = dt/t$, $b = dt/(1-t)$, we have
\[
\int_0^1 T_{m,n} = \frac{2^{2m}}{(2m+2)!} \binom{m+1}{2n+1}.
\]

Let
\[
J(z) := \sum_{k=0}^{\infty} z^{2k} \int_0^1 (ab)^k = \sum_{k=0}^{\infty} z^{2k} \zeta(\{2\}^k).
\]

Then [BBB]
\[
J(z) = \begin{cases} \frac{\sinh(\pi z)}{\pi z}, & \text{if } z \neq 0, \\ 1, & \text{if } z = 0. \end{cases}
\]
We have

\[J(z \cos \theta) J(z \sin \theta) \]
\[= \frac{\sinh(\pi z \cos \theta)}{\pi z \cos \theta} \cdot \frac{\sinh(\pi z \sin \theta)}{\pi z \sin \theta} \]
\[= \frac{\cosh \pi z (\cos \theta + \sin \theta) - \cosh \pi z (\cos \theta - \sin \theta)}{2 \pi^2 z^2 \sin \theta \cos \theta} \]
\[= \frac{\cosh \pi \sqrt{1 + \sin 2\theta} - \cosh \pi \sqrt{1 - \sin 2\theta}}{\pi^2 z^2 \sin 2\theta} \]
\[= \sum_{m=1}^{\infty} \frac{(\pi z)^{2m}}{(2m)! \pi^2 z^2 \sin 2\theta} \left\{ (1 + \sin 2\theta)^m - (1 - \sin 2\theta)^m \right\} \]
\[= \sum_{m=0}^{\infty} \frac{2(\pi z)^{2m}}{(2m + 2)!} \sum_{n=0}^{[m/2]} (m + 1 - 2n)(\sin 2\theta)^{2n}. \]

Now recall Theorem 7:

\[\sum_{k=0}^{m} x^k y^{m-k} (ab)^k \omega (ab)^{m-k} \]
\[= \sum_{n=0}^{[m/2]} (4xy)^n (x + y)^{m-2n} T_{m,n}. \]

Putting \(x = z^2 \cos \theta \) and \(y = z^2 \sin \theta \) yields

\[J(z \cos \theta) J(z \sin \theta) \]
\[= \left[\sum_{k=0}^{\infty} (z \cos \theta)^2 k \int_0^1 (ab)^k \left[\sum_{j=0}^{\infty} (z \sin \theta)^2 j \int_0^1 (ab)^j \right] \right] \]
\[= \sum_{m=0}^{\infty} \sum_{n=0}^{[m/2]} (z \cos \theta)^{2n} (z \sin \theta)^{2m-2n} \]
\[\times \int_0^1 (ab)^n \omega (ab)^{m-n} \]
\[= \sum_{m=0}^{[m/2]} \sum_{n=0}^{[m/2]} (4z^4 \sin^2 \theta \cos^2 \theta)^n \]
\[\times (z^2 \cos^2 \theta + z^2 \sin^2 \theta)^{m-2n} \int_0^1 T_{m,n} \]
\[= \sum_{m=0}^{\infty} z^{2m} \sum_{n=0}^{[m/2]} (\sin 2\theta)^{2n} \int_0^1 T_{m,n}. \]

Conjecture 10

\[Z(a_1, b_1, a_2, b_2, a_3) + Z(a_2, b_1, a_3, b_2, a_1) + Z(a_3, b_1, a_1, b_2, a_2) \]
\[= Z(a_1, b_2, b_1, a_3) + Z(a_2, b_3, b_1, a_1) + Z(a_3, b_2, a_1, b_2, a_2) \]

Conjecture 11 Let \(q_1 = q_2 = t^3 \), and for \(n \geq 1 \),
\[n(n + 1)^2 q_{n+2} = n(2n + 1)q_{n+1} + (n^3 + (-1)^{n+1} t^3)q_n. \]

Then
\[\lim_{n \to \infty} q_n = t^3 \prod_{n=1}^{\infty} \left(1 + \frac{t^3}{3n^3} \right). \]

Equivalently, for all positive integers \(n \),
\[\text{Li}_{[2,1]^n}((-1,1)^n) \geq 8^{-n} \text{Li}_{[2,1]^n}((1,1)^n) \]
\[\iff \zeta((2,1)^n) \geq 8^{-n} \zeta((2,1)^n) = 8^{-n} \zeta((3)^n). \]

47