Finite Euler Products and the Riemann Hypothesis

S. M. Gonek

Department of Mathematics
University of Rochester

September 29, 2007
University of Maine
Approximations of $\zeta(s)$

A Function Related to $\zeta(s)$ and its Zeros

The Relation Between $\zeta(s)$ and $\zeta_X(s)$
I. Approximations of $\zeta(s)$
The Approximation of $\zeta(s)$ by Dirichlet Polynomials

We write $s = \sigma + it$ and assume s is not near 1.

In the half–plane $\sigma > 1$,

$$\zeta(s) = \sum_{n=1}^{\infty} n^{-s}.$$

If $X \geq 1$ and we estimate the tail trivially, we obtain

$$\zeta(s) = X \sum_{n=1}^{X} n^{-s} + O\left(\frac{X}{\sigma - 1}\right).$$
We write $s = \sigma + it$ and assume s is not near 1.
The Approximation of $\zeta(s)$ by Dirichlet Polynomials

We write $s = \sigma + it$ and assume s is not near 1.

In the half–plane $\sigma > 1$

$$\zeta(s) = \sum_{n=1}^{\infty} n^{-s}.$$
We write $s = \sigma + it$ and assume s is not near 1.

In the half-plane $\sigma > 1$

$$\zeta(s) = \sum_{n=1}^{\infty} n^{-s}.$$

If $X \geq 1$ and we estimate the tail trivially, we obtain
We write $s = \sigma + it$ and assume s is not near 1.

In the half–plane $\sigma > 1$

$$\zeta(s) = \sum_{n=1}^{\infty} n^{-s}.$$

If $X \geq 1$ and we estimate the tail trivially, we obtain

$$\zeta(s) = \sum_{n=1}^{X} n^{-s} + O \left(\frac{X^{1-\sigma}}{\sigma - 1} \right).$$
A crude form of the approximate functional equation extends this into the critical strip:

\[\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^{s}} = \sum_{n=1}^{X} n^{-s} + O(X^{-\sigma}) \quad (\sigma > 0) \]

But \(X \) must be \(\gg t \).
Approximation by Dirichlet Polynomials in the Strip

A crude form of the approximate functional equation extends this into the critical strip:

\[\zeta(s) = \sum_{n=1}^{X} n^{-s} + \frac{X^{1-s}}{s-1} + O(X^{-\sigma}) \quad (\sigma > 0). \]
A crude form of the approximate functional equation extends this into the critical strip:

\[\zeta(s) = \sum_{n=1}^{X} n^{-s} + \frac{X^{1-s}}{s-1} + O(X^{-\sigma}) \quad (\sigma > 0). \]

But \(X \) must be \(\gg t \).
A crude form of the approximate functional equation extends this into the critical strip:

\[\zeta(s) = \sum_{n=1}^{X} n^{-s} + \frac{X^{1-s}}{s-1} + O(X^{-\sigma}) \quad (\sigma > 0). \]

But \(X \) must be \(\gg t \).

Example

When \(X = t \) we have

\[\zeta(s) = \sum_{n \leq t} n^{-s} + O(t^{-\sigma}) \quad (\sigma > 0). \]
Now recall the Lindelöf Hypothesis (LH): \(\zeta(1/2 + it) \ll (|t| + 2)^\varepsilon \).
Approximations Assuming the Lindelöf Hypothesis

Now recall the

Lindelöf Hypothesis (LH): \(\zeta(1/2 + it) \ll (|t| + 2)^\varepsilon. \)

Assuming LH, we can do much better.
Now recall the Lindelöf Hypothesis (LH): \(\zeta(1/2 + it) \ll (|t| + 2)^\epsilon \).
Assuming LH, we can do much better.

Theorem

The Lindelöf Hypothesis is true if and only if

\[
\zeta(s) = \sum_{n \leq X} \frac{1}{n^s} + O(X^{1/2-\sigma}|t|^\epsilon)
\]

for \(\frac{1}{2} \leq \sigma \ll 1 \) and \(1 \leq X \leq t^2 \).
Approximations Assuming the Lindelöf Hypothesis

Now recall the Lindelöf Hypothesis (LH): \(\zeta(1/2 + it) \ll (|t| + 2)^\varepsilon \).

Assuming LH, we can do much better.

Theorem

The Lindelöf Hypothesis is true if and only if

\[
\zeta(s) = \sum_{n \leq X} \frac{1}{n^s} + O(X^{1/2-\sigma} |t|^\varepsilon)
\]

for \(\frac{1}{2} \leq \sigma \ll 1 \) and \(1 \leq X \leq t^2 \).

Thus, on LH even short truncations approximate \(\zeta(s) \) well in \(\sigma > 1/2 \).
Approximations when $\sigma \leq \frac{1}{2}$

On the other hand, short sums cannot approximate $\zeta(s)$ well in the strip $0 < \sigma \leq \frac{1}{2}$.

For example, let $\sigma < \frac{1}{2}$ and compare

$$\int_T^t \sum_{n \leq X} n - s \approx T \cdot X^{1 - 2\sigma}$$

and

$$\int_T^t \left| \zeta(\sigma + it) \right|^2 dt \approx T \cdot T^{1 - 2\sigma}.$$

These are not equal if X is small relative to T.
Approximations when $\sigma \leq \frac{1}{2}$

On the other hand, short sums can *not* approximate $\zeta(s)$ well in the strip $0 < \sigma \leq 1/2$.
Approximations when $\sigma \leq \frac{1}{2}$

On the other hand, short sums can *not* approximate $\zeta(s)$ well in the strip $0 < \sigma \leq 1/2$.

For example, let $\sigma < 1/2$ and compare
Approximations when $\sigma \leq \frac{1}{2}$

On the other hand, short sums can *not* approximate $\zeta(s)$ well in the strip $0 < \sigma \leq 1/2$.

For example, let $\sigma < 1/2$ and compare

$$\int_T^{2T} \left| \sum_{n \leq X} n^{-s} \right|^2 dt \approx T \cdot X^{1-2\sigma}$$
Approximations when $\sigma \leq \frac{1}{2}$

On the other hand, short sums can not approximate $\zeta(s)$ well in the strip $0 < \sigma \leq 1/2$.

For example, let $\sigma < 1/2$ and compare

$$\int_{T}^{2T} \left| \sum_{n \leq X} n^{-s} \right|^{2} dt \approx T \cdot X^{1-2\sigma}$$

and

$$\int_{T}^{2T} |\zeta(\sigma + it)|^{2} dt \approx T \cdot T^{1-2\sigma}.$$
Approximations when \(\sigma \leq \frac{1}{2} \)

On the other hand, short sums can *not* approximate \(\zeta(s) \) well in the strip \(0 < \sigma \leq 1/2 \).

For example, let \(\sigma < 1/2 \) and compare

\[
\int_T^{2T} | \sum_{n \leq X} n^{-s} |^2 dt \approx T \cdot X^{1-2\sigma}
\]

and

\[
\int_T^{2T} | \zeta(\sigma + it) |^2 dt \approx T \cdot T^{1-2\sigma}.
\]

These are not equal if \(X \) is small relative to \(T \).
The zeta-function also has an Euler product representation

\[\zeta(s) = \prod_{\rho} \left(1 - \frac{1}{\rho^s}\right)^{-1} \quad (\sigma > 1). \]
The zeta-function also has an Euler product representation

\[\zeta(s) = \prod_p \left(1 - \frac{1}{p^s}\right)^{-1} \quad (\sigma > 1). \]

Trivially estimating the tail of the product, we obtain
The zeta-function also has an Euler product representation

\[\zeta(s) = \prod_p \left(1 - \frac{1}{p^s} \right)^{-1} \quad (\sigma > 1). \]

Trivially estimating the tail of the product, we obtain

\[\zeta(s) = \prod_{p \leq X} \left(1 - \frac{1}{p^s} \right)^{-1} \left(1 + O\left(\frac{X^{1-\sigma}}{(\sigma - 1) \log X} \right) \right). \]
The zeta-function also has an Euler product representation

$$\zeta(s) = \prod_p \left(1 - \frac{1}{p^s}\right)^{-1} \quad (\sigma > 1).$$

Trivially estimating the tail of the product, we obtain

$$\zeta(s) = \prod_{p \leq X} \left(1 - \frac{1}{p^s}\right)^{-1} \left(1 + O\left(\frac{X^{1-\sigma}}{(\sigma - 1) \log X}\right)\right).$$

Can we extend this into the critical strip?
Yes, but we need to work with a weighted Euler product.

\[\prod_{p \leq X} \left(1 - \frac{1}{p^s}\right)^{-1} = \exp\left(\sum_{p \leq X} \sum_{k=1}^\infty \frac{1}{k} p^{ks}\right) \approx \exp\left(\sum_{n \leq X} \Lambda(n) n^s \log n\right)\]

\[\Lambda(n) = \log p \text{ if } n = p^k, \text{ otherwise } \Lambda(n) = 0.\]
Yes, but we need to work with a weighted Euler product. Note that

\[
\prod_{p \leq X^2} \left(1 - \frac{1}{p^s}\right)^{-1} = \exp \left(\sum_{p \leq X^2} \sum_{k=1}^{\infty} \frac{1}{k p^s}\right) \approx \exp \left(\sum_{k \leq X^2} \frac{1}{k} p^s\right) = \exp \left(\sum_{n \leq X^2} \Lambda(n)n^s \log n\right).
\]

\[\Lambda(n) = \log p \text{ if } n = p^k, \text{ otherwise } \Lambda(n) = 0.\]
Yes, but we need to work with a weighted Euler product. Note that

\[
\prod_{p \leq X^2} \left(1 - \frac{1}{p^s}\right)^{-1}
\]

We "smooth" the \(\Lambda \)'s and call the result \(P_X(s) \).
Yes, but we need to work with a weighted Euler product. Note that

$$\prod_{p \leq X^2} \left(1 - \frac{1}{p^s}\right)^{-1} = \exp \left(\sum_{p \leq X^2} \sum_{k=1}^{\infty} \frac{1}{k \ p^{ks}} \right)$$
Yes, but we need to work with a weighted Euler product. Note that

\[
\prod_{p \leq X^2} \left(1 - \frac{1}{p^s}\right)^{-1} = \exp \left(\sum_{p \leq X^2} \sum_{k=1}^{\infty} \frac{1}{k \cdot p^{k s}} \right)
\]

\[
\approx \exp \left(\sum_{p^k \leq X^2} \frac{1}{k \cdot p^{k s}} \right)
\]
Yes, but we need to work with a weighted Euler product. Note that

\[
\prod_{p \leq X^2} \left(1 - \frac{1}{p^s}\right)^{-1} = \exp \left(\sum_{p \leq X^2} \sum_{k=1}^{\infty} \frac{1}{k p^{k s}} \right)
\approx \exp \left(\sum_{p^k \leq X^2} \frac{1}{k p^{k s}} \right)
= \exp \left(\sum_{n \leq X^2} \frac{\Lambda(n)}{ns \log n} \right).
\]
Yes, but we need to work with a weighted Euler product. Note that

\[
\prod_{p \leq X^2} \left(1 - \frac{1}{p^s}\right)^{-1} = \exp \left(\sum_{p \leq X^2} \sum_{k=1}^{\infty} \frac{1}{k \ p^{ks}} \right)
\]

\[
\approx \exp \left(\sum_{p^k \leq X^2} \frac{1}{k \ p^{ks}} \right)
\]

\[
= \exp \left(\sum_{n \leq X^2} \frac{\Lambda(n)}{n^s \log n} \right).
\]

\(\Lambda(n) = \log p\) if \(n = p^k\), otherwise \(\Lambda(n) = 0\).
Yes, but we need to work with a weighted Euler product. Note that

$$\prod_{p \leq X^2} \left(1 - \frac{1}{p^s}\right)^{-1} = \exp \left(\sum_{p \leq X^2} \sum_{k=1}^{\infty} \frac{1}{k \cdot p^{ks}} \right)$$

$$\approx \exp \left(\sum_{p^k \leq X^2} \frac{1}{k \cdot p^{ks}} \right)$$

$$= \exp \left(\sum_{n \leq X^2} \frac{\Lambda(n)}{n^s \log n} \right).$$

$$\Lambda(n) = \log p \text{ if } n = p^k, \text{ otherwise } \Lambda(n) = 0.$$ We “smooth” the Λ’s and call the result $P_X(s)$.
Specifically, we set

\[P_X(s) = \exp \left(\sum_{n \leq X^2} \frac{\Lambda_X(n)}{n^s \log n} \right), \]
Definition of $P_X(s)$

Specifically, we set

$$P_X(s) = \exp \left(\sum_{n \leq X^2} \frac{\Lambda_X(n)}{n^s \log n} \right),$$

where

$$\Lambda_X(n) = \begin{cases}
\Lambda(n) & \text{if } n \leq X, \\
\Lambda(n) \left(2 - \frac{\log n}{\log X} \right) & \text{if } X < n \leq X^2, \\
0 & \text{if } n > X^2.
\end{cases}$$
Specifically, we set

\[P_X(s) = \exp \left(\sum_{n \leq X^2} \frac{\Lambda_X(n)}{n^s \log n} \right), \]

where

\[\Lambda_X(n) = \begin{cases}
\Lambda(n) & \text{if } n \leq X, \\
\Lambda(n) \left(2 - \frac{\log n}{\log X} \right) & \text{if } X < n \leq X^2, \\
0 & \text{if } n > X^2.
\end{cases} \]

Remember

\[P_X(s) \approx \prod_{p \leq X^2} \left(1 - \frac{1}{p^s} \right)^{-1}. \]
We also write

\[Q_X(s) = \exp \left(\sum_{\rho} F_2((s - \rho) \log X) \right) \cdot \exp \left(\sum_{n=1}^{\infty} F_2((s + 2n) \log X) \right) \]

\[\cdot \exp \left(F_2((1 - s) \log X) \right) \]
Definition of $Q_X(s)$

We also write

$$Q_X(s) = \exp \left(\sum_{\rho} F_2((s - \rho) \log X) \right) \cdot \exp \left(\sum_{n=1}^{\infty} F_2((s + 2n) \log X) \right) \cdot \exp \left(F_2((1 - s) \log X) \right)$$

with

$$F_2(z) = 2 \int_{2z}^{\infty} \frac{e^{-w}}{w^2} dw - \int_{z}^{\infty} \frac{e^{-w}}{w^2} dw \ (z \neq 0).$$
Definition of $Q_X(s)$

We also write

$$Q_X(s) = \exp \left(\sum_{\rho} F_2((s - \rho) \log X) \right) \cdot \exp \left(\sum_{n=1}^{\infty} F_2((s + 2n) \log X) \right) \cdot \exp \left(F_2((1 - s) \log X) \right)$$

with

$$F_2(z) = 2 \int_{2z}^{\infty} \frac{e^{-w}}{w^2} \, dw - \int_{z}^{\infty} \frac{e^{-w}}{w^2} \, dw \quad (z \neq 0).$$

For z large $F_2(z)$ is small. For z near 0

$$F_2(z) \sim \log(c z).$$
A Hybrid Formula for $\zeta(s)$

It follows that in the critical strip away from $s = 1$

$$Q_X(s) \approx \prod_{|\rho - s| \leq 1/ \log X} \left(c (s - \rho) \log X \right)$$
A Hybrid Formula for $\zeta(s)$

It follows that in the critical strip away from $s = 1$

$$Q_X(s) \approx \prod_{|\rho-s| \leq 1/\log X} \left(c(s - \rho) \log X \right)$$

With this P_X and Q_X we have
A Hybrid Formula for $\zeta(s)$

It follows that in the critical strip away from $s = 1$

$$Q_X(s) \approx \prod_{|\rho - s| \leq 1/\log X} \left(c(s - \rho) \log X \right)$$

With this P_X and Q_X we have

Theorem (G., Hughes, Keating)

For $\sigma \geq 0$ and $X \geq 2$,

$$\zeta(s) = P_X(s) \cdot Q_X(s).$$
A Hybrid Formula for $\zeta(s)$

It follows that in the critical strip away from $s = 1$

$$Q_X(s) \approx \prod_{|\rho - s| \leq 1/\log X} \left(c (s - \rho) \log X \right)$$

With this P_X and Q_X we have

Theorem (G., Hughes, Keating)

For $\sigma \geq 0$ and $X \geq 2$,

$$\zeta(s) = P_X(s) \cdot Q_X(s).$$

Thus, in the critical strip away from $s = 1$

$$\zeta(s) \approx \prod_{\rho \leq X^2} \left(1 - \frac{1}{\rho^s} \right)^{-1} \cdot \prod_{|\rho - s| \leq 1/\log X} \left(c (s - \rho) \log X \right)$$
\[\zeta(s) \approx \prod_{p \leq X^2} \left(1 - \frac{1}{p^s}\right)^{-1} \cdot \prod_{|\rho-s| \leq 1/\log X} \left(c(s - \rho) \log X \right) \]
\[\zeta(s) \approx \prod_{p \leq X^2} \left(1 - \frac{1}{p^s} \right)^{-1} \cdot \prod_{|\rho - s| \leq 1/\log X} \left(c(s - \rho) \log X \right) \]

We note that if RH holds and \(\sigma > \frac{1}{2} \), then...
\[\zeta(s) \approx \prod_{p \leq X^2} \left(1 - \frac{1}{p^s}\right)^{-1} \cdot \prod_{|\rho - s| \leq 1/\log X} \left(c(s - \rho) \log X\right) \]

We note that if RH holds and \(\sigma > \frac{1}{2} \), then

\[\zeta(s) \approx P_X(s). \]
\[\zeta(s) \approx \prod_{p \leq X^2} \left(1 - \frac{1}{p^s}\right)^{-1} \cdot \prod_{|\rho - s| \leq 1/\log X} \left(c(s - \rho)\log X\right) \]

We note that if RH holds and \(\sigma > \frac{1}{2} \), then

\[\zeta(s) \approx P_X(s). \]

Theorem

Assume RH. Let \(2 \leq X \leq t^2 \) and \(\frac{1}{2} + \frac{C \log \log t}{\log X} \leq \sigma \leq 1 \) with \(C > 1 \). Then

\[\zeta(s) = P_X(s) \left(1 + O\left(\log^{(1-C)/2} t\right)\right). \]

Conversely, this implies \(\zeta(s) \) has at most a finite number of complex zeros in this region.
Approximations when $\sigma \leq 1/2$

Short products can *not* approximate $\zeta(s)$ well in the strip $0 < \sigma \leq 1/2$.

To see this compare, when $\sigma < 1/2$ is fixed and $X < T^{1/2 - \epsilon}$,

$$\int_{T}^{2T} \left(\log |\zeta(\sigma + it)| \right)^2 dt \sim \left(\frac{1}{2} - \sigma \right)^2 T \log 2 T$$

and

$$\int_{T}^{2T} \left(\log |P_X(\sigma + it)| \right)^2 dt \sim cT \left(X^{2} - 4\sigma \log X \right).$$

If X is a small power of T, the second is larger.

The last estimate also shows that if $\sigma < 1/2$, then infinitely often in t

$$P_X(s) \gg \exp\left(X^{1 - 2\sigma \sqrt{\log X}} \right),$$

which is very large.
Approximations when $\sigma \leq 1/2$

Short products can *not* approximate $\zeta(s)$ well in the strip $0 < \sigma \leq 1/2$.

To see this compare, when $\sigma < 1/2$ is fixed and $X < T^{1/2-\epsilon}$,
Approximations when \(\sigma \leq 1/2 \)

Short products can \textit{not} approximate \(\zeta(s) \) well in the strip \(0 < \sigma \leq 1/2 \).

To see this compare, when \(\sigma < 1/2 \) is fixed and \(X < T^{1/2-\epsilon} \),

\[
\int_{T}^{2T} \left(\log |\zeta(\sigma + it)| \right)^2 dt \sim (1/2 - \sigma)^2 T \log^2 T
\]
Approximations when $\sigma \leq 1/2$

Short products can *not* approximate $\zeta(s)$ well in the strip $0 < \sigma \leq 1/2$.

To see this compare, when $\sigma < 1/2$ is fixed and $X < T^{1/2-\epsilon}$,

$$\int_T^{2T} \left(\log |\zeta(\sigma + it)| \right)^2 dt \sim (1/2 - \sigma)^2 T \log^2 T$$

and

$$\int_T^{2T} \left(\log |P_X(\sigma + it)| \right)^2 dt \sim cT \left(\frac{X^{2-4\sigma}}{\log X} \right).$$
Approximations when $\sigma \leq 1/2$

Short products can *not* approximate $\zeta(s)$ well in the strip $0 < \sigma \leq 1/2$.

To see this compare, when $\sigma < 1/2$ is fixed and $X < T^{1/2-\epsilon}$,

$$\int_{T}^{2T} (\log |\zeta(\sigma + it)|)^2 dt \sim (1/2 - \sigma)^2 T \log^2 T$$

and

$$\int_{T}^{2T} (\log |P_X(\sigma + it)|)^2 dt \sim cT \left(\frac{X^{2-4\sigma}}{\log X} \right).$$

If X is a small power of T, the second is larger.
Approximations when $\sigma \leq 1/2$

Short products can not approximate $\zeta(s)$ well in the strip $0 < \sigma \leq 1/2$.

To see this compare, when $\sigma < 1/2$ is fixed and $X < T^{1/2-\epsilon}$,

$$\int_{T}^{2T} (\log |\zeta(\sigma + it)|)^2 dt \sim (1/2 - \sigma)^2 T \log^2 T$$

and

$$\int_{T}^{2T} (\log |P_X(\sigma + it)|)^2 dt \sim cT \left(\frac{X^{2-4\sigma}}{\log X} \right).$$

If X is a small power of T, the second is larger.

The last estimate also shows that if $\sigma < 1/2$, then infinitely often in t

$$P_X(s) \gg \exp \left(\frac{X^{1-2\sigma}}{\sqrt{\log X}} \right), \quad \text{which is very large.}$$
II. A Function Related to $\zeta(s)$ and its Zeros
Deficiency of the Sum Approximation on $\sigma = 1/2$

On LH (and so on RH) we saw that for $\frac{1}{2} < \sigma \leq 1$ fixed,

$$\zeta(s) = \sum_{n \leq X} \frac{1}{n^s} + o(1),$$

even if X is small.
Deficiency of the Sum Approximation on $\sigma = 1/2$

On LH (and so on RH) we saw that for $\frac{1}{2} < \sigma \leq 1$ fixed,

$$\zeta(s) = \sum_{n \leq X} \frac{1}{n^s} + o(1),$$

even if X is small. But on $\sigma = \frac{1}{2}$ we needed more terms:

$$\zeta(s) = \sum_{n \leq X} \frac{1}{n^s} + \sum_{X < n \leq t} \frac{1}{n^s} + o(1).$$
On LH (and so on RH) we saw that for $\frac{1}{2} < \sigma \leq 1$ fixed,

$$\zeta(s) = \sum_{n \leq X} \frac{1}{n^s} + o(1),$$

even if X is small. But on $\sigma = \frac{1}{2}$ we needed more terms:

$$\zeta(s) = \sum_{n \leq X} \frac{1}{n^s} + \sum_{X < n \leq t} \frac{1}{n^s} + o(1).$$

Compare this with the approximate functional equation
Deficiency of the Sum Approximation on $\sigma = 1/2$

On LH (and so on RH) we saw that for $\frac{1}{2} < \sigma \leq 1$ fixed,

$$\zeta(s) = \sum_{n \leq X} \frac{1}{n^s} + o(1),$$

even if X is small. But on $\sigma = \frac{1}{2}$ we needed more terms:

$$\zeta(s) = \sum_{n \leq X} \frac{1}{n^s} + \sum_{X < n \leq t} \frac{1}{n^s} + o(1).$$

Compare this with the approximate functional equation

$$\zeta(s) = \sum_{n \leq X} \frac{1}{n^s} + \chi(s) \sum_{n \leq t/2\pi X} \frac{1}{n^{1-s}} + o(1).$$
Deficiency of the Sum Approximation on $\sigma = 1/2$

On LH (and so on RH) we saw that for $\frac{1}{2} < \sigma \leq 1$ fixed,

$$\zeta(s) = \sum_{n \leq X} \frac{1}{n^s} + o(1),$$

even if X is small. But on $\sigma = \frac{1}{2}$ we needed more terms:

$$\zeta(s) = \sum_{n \leq X} \frac{1}{n^s} + \sum_{X < n \leq t} \frac{1}{n^s} + o(1).$$

Compare this with the approximate functional equation

$$\zeta(s) = \sum_{n \leq X} \frac{1}{n^s} + \chi(s) \sum_{n \leq t/2\pi X} \frac{1}{n^{1-s}} + o(1).$$

Here $\chi(s) = \pi^{s-1/2} \Gamma(1/2 - s/2)/\Gamma(s/2)$.
Adding Back the Deficit

So essentially,

\[\sum_{X < n \leq t} \frac{1}{n^s} = \chi(s) \sum_{n \leq t/2\pi X} \frac{1}{n^{1-s}}. \]
So essentially,

\[\sum_{X < n \leq t} \frac{1}{n^s} = \chi(s) \sum_{n \leq t/2\pi} \frac{1}{n^{1-s}}. \]

In particular, putting \(X = \sqrt{t/2\pi} \) and \(\sigma = 1/2 \) in the approx. f. e.
Adding Back the Deficit

So essentially,

\[\sum_{X < n \leq t} \frac{1}{n^s} = \chi(s) \sum_{n \leq t/2\pi X} \frac{1}{n^{1-s}}. \]

In particular, putting \(X = \sqrt{t/2\pi} \) and \(\sigma = 1/2 \) in the approx. f. e.

\[\zeta(s) = \sum_{n \leq X} \frac{1}{n^s} + \chi(s) \sum_{n \leq t/2\pi X} \frac{1}{n^{1-s}} + o(1), \]
Adding Back the Deficit

So essentially,

\[
\sum_{X < n \leq t} \frac{1}{n^s} = \chi(s) \sum_{n \leq t/2\pi X} \frac{1}{n^{1-s}}.
\]

In particular, putting \(X = \sqrt{t/2\pi} \) and \(\sigma = 1/2 \) in the approx. f. e.

\[
\zeta(s) = \sum_{n \leq X} \frac{1}{n^s} + \chi(s) \sum_{n \leq t/2\pi X} \frac{1}{n^{1-s}} + o(1),
\]

we see that
Adding Back the Deficit

So essentially,

$$
\sum_{X<n\leq t} \frac{1}{n^s} = \chi(s) \sum_{n\leq t/2\pi} \frac{1}{n^{1-s}}.
$$

In particular, putting $X = \sqrt{t/2\pi}$ and $\sigma = 1/2$ in the approx. f. e.

$$
\zeta(s) = \sum_{n\leq X} \frac{1}{n^s} + \chi(s) \sum_{n\leq t/2\pi} \frac{1}{n^{1-s}} + o(1),
$$

we see that

$$
\zeta(\frac{1}{2} + it) = \sum_{n\leq \sqrt{t/2\pi}} \frac{1}{n^{1^2+it}} + \chi(\frac{1}{2} + it) \sum_{n\leq \sqrt{t/2\pi}} \frac{1}{n^{1^2-it}} + o(1).
$$
Deficiency of the Euler Product Approximation on
\(\sigma = 1/2 \)
How much is the Euler product approximation
\[\zeta(s) = P_X(s)(1 + o(1)) \]
off by as \(\sigma \) approaches 1/2?
Deficiency of the Euler Product Approximation on \(\sigma = 1/2 \)

How much is the Euler product approximation

\[\zeta(s) = P_X(s)(1 + o(1)) \]

off by as \(\sigma \) approaches 1/2 ?

A tempting guess is that for some range of \(X \)
Deficiency of the Euler Product Approximation on \(\sigma = 1/2 \)

How much is the Euler product approximation

\[
\zeta(s) = P_X(s)(1 + o(1))
\]

off by as \(\sigma \) approaches 1/2?

A tempting guess is that for some range of \(X \)

\[
\zeta(s) \approx P_X(s) + \chi(s)P_X(1 - s).
\]
Deficiency of the Euler Product Approximation on \(\sigma = 1/2 \)

How much is the Euler product approximation

\[
\zeta(s) = \prod_{X} (s) \left(1 + o(1)\right)
\]

off by as \(\sigma \) approaches 1/2 ?

A tempting guess is that for some range of \(X \)

\[
\zeta(s) \approx \prod_{X} (s) + \chi(s) \prod_{X} (1 - s).
\]

But this is far too large if \(X \) is a power of \(t \)
Deficiency of the Euler Product Approximation on $\sigma = 1/2$

How much is the Euler product approximation

$$\zeta(s) = P_X(s)(1 + o(1))$$

off by as σ approaches 1/2?

A tempting guess is that for some range of X

$$\zeta(s) \approx P_X(s) + \chi(s)P_X(1 - s).$$

But this is far too large if X is a power of t because when $\sigma > 1/2$,

(University of Rochester)
Deficiency of the Euler Product Approximation on \(\sigma = 1/2 \)

How much is the Euler product approximation

\[
\zeta(s) = P_X(s)(1 + o(1))
\]

off by as \(\sigma \) approaches 1/2 ?

A tempting guess is that for some range of \(X \)

\[
\zeta(s) \approx P_X(s) + \chi(s)P_X(1 - s).
\]

But this is far too large if \(X \) is a power of \(t \) because when \(\sigma > 1/2 \),

\[
\chi(s)P_X(1 - s) = \Omega(t^{1/2-\sigma}\exp(X^{\sigma-\frac{1}{2}}/\log X)),
\]
Deficiency of the Euler Product Approximation on
\(\sigma = 1/2 \)

How much is the Euler product approximation

\[\zeta(s) = P_X(s)(1 + o(1)) \]

off by as \(\sigma \) approaches 1/2?

A tempting guess is that for some range of \(X \)

\[\zeta(s) \approx P_X(s) + \chi(s)P_X(1 - s). \]

But this is far too large if \(X \) is a power of \(t \) because when \(\sigma > 1/2 \),

\[\chi(s)P_X(1 - s) = \Omega(t^{1/2-\sigma} \exp(X^{\sigma-\frac{1}{2}} / \log X)) , \]

whereas \(\zeta(s) \ll t^\epsilon \).
Definition of $\zeta_X(s)$

As an alternative to

$$\zeta(s) \approx P_X(s) + \chi(s)P_X(1 - s)$$
Definition of $\zeta_X(s)$

As an alternative to

$$\zeta(s) \approx P_X(s) + \chi(s)P_X(1 - s)$$

we consider

$$\zeta_X(s) = P_X(s) + \chi(s)P_X(\overline{s}).$$
Definition of $\zeta_X(s)$

As an alternative to

$$\zeta(s) \approx P_X(s) + \chi(s)P_X(1 - s)$$

we consider

$$\zeta_X(s) = P_X(s) + \chi(s)P_X(\overline{s}).$$

These are identical on the critical line
Definition of $\zeta_X(s)$

As an alternative to

$$\zeta(s) \approx P_X(s) + \chi(s)P_X(1 - s)$$

we consider

$$\zeta_X(s) = P_X(s) + \chi(s)P_X(\overline{s}).$$

These are identical on the critical line and

$$\zeta(s), \zeta_X(s) = P_X(s)(1 + o(1))$$

when $\sigma > 1/2$ is fixed.
Definition of $\zeta_X(s)$

As an alternative to

$$\zeta(s) \approx P_X(s) + \chi(s)P_X(1 - s)$$

we consider

$$\zeta_X(s) = P_X(s) + \chi(s)P_X(\overline{s}) .$$

These are identical on the critical line and

$$\zeta(s), \quad \zeta_X(s) = P_X(s)(1 + o(1))$$

when $\sigma > 1/2$ is fixed. To study $\zeta_X(s)$ further we need a lemma.
Definition of $\zeta_X(s)$

As an alternative to

$$\zeta(s) \approx P_X(s) + \chi(s)P_X(1 - s)$$

we consider

$$\zeta_X(s) = P_X(s) + \chi(s)P_X(\overline{s}) .$$

These are identical on the critical line and

$$\zeta(s), \ zeta_X(s) = P_X(s) (1 + o(1))$$

when $\sigma > 1/2$ is fixed. To study $\zeta_X(s)$ further we need a lemma.

Lemma

In $0 \leq \sigma \leq 1$, $|t| \geq 10$, $|\chi(s)| = 1$ if and only if $\sigma = 1/2$.

Furthermore,

$$\chi(s) = \left(\frac{t}{2\pi} \right)^{1/2-\sigma-it} e^{it + i\pi/4} \left(1 + O(t^{-1}) \right).$$
The Riemann Hypothesis for $\zeta_X(s)$

Theorem

All of the zeros of

$$\zeta_X(s) = P_X(s) + \chi(s)P_X(\overline{s})$$

*in $0 \leq \sigma \leq 1$ and $|t| \geq 10$ lie on $\sigma = 1/2$.***
The Riemann Hypothesis for $\zeta_X(s)$

Theorem

All of the zeros of

$$\zeta_X(s) = P_X(s) + \chi(s)P_X(\overline{s})$$

in $0 \leq \sigma \leq 1$ and $|t| \geq 10$ lie on $\sigma = 1/2$.

Proof.

$$\zeta_X(s) = P_X(s) \left(1 + \chi(s) \frac{P_X(\overline{s})}{P_X(s)}\right).$$

Also, $P_X(s)$ is never 0. Thus, if s is a zero, $|\chi(\sigma + it)| = 1$. By the lemma, when $|t| \geq 10$ this implies that $\sigma = 1/2$.

(University of Rochester)
The Number of Zeros of $\zeta_X(s)$

The number of zeros of $\zeta(s)$ up to height T is
The Number of Zeros of $\zeta_X(s)$

The number of zeros of $\zeta(s)$ up to height T is

$$N(T) = -\frac{1}{2\pi} \arg \chi(1/2 + iT) + \frac{1}{\pi} \arg \zeta(1/2 + iT) + 1$$
The Number of Zeros of $\zeta_X(s)$

The number of zeros of $\zeta(s)$ up to height T is

$$N(T) = -\frac{1}{2\pi} \arg \chi(1/2 + iT) + \frac{1}{\pi} \arg \zeta(1/2 + iT) + 1$$

$$= \frac{T}{2\pi} \log \frac{T}{2\pi} - \frac{T}{2\pi} + \frac{7}{8} + S(T) + O\left(\frac{1}{T}\right).$$
The Number of Zeros of $\zeta_X(s)$

The number of zeros of $\zeta(s)$ up to height T is

$$N(T) = -\frac{1}{2\pi} \arg \chi(1/2 + iT) + \frac{1}{\pi} \arg \zeta(1/2 + iT) + 1$$

$$= \frac{T}{2\pi} \log \frac{T}{2\pi} - \frac{T}{2\pi} + \frac{7}{8} + S(T) + O\left(\frac{1}{T}\right).$$

How many zeros does $\zeta_X(s)$ have?
The Number of Zeros of $\zeta_X(s)$

The number of zeros of $\zeta(s)$ up to height T is

$$N(T) = -\frac{1}{2\pi} \arg \chi(1/2 + iT) + \frac{1}{\pi} \arg \zeta(1/2 + iT) + 1$$

$$= \frac{T}{2\pi} \log \frac{T}{2\pi} - \frac{T}{2\pi} + \frac{7}{8} + S(T) + O\left(\frac{1}{T}\right).$$

How many zeros does $\zeta_X(s)$ have? Write
The number of zeros of $\zeta(s)$ up to height T is

$$N(T) = -\frac{1}{2\pi} \arg \chi(1/2 + iT) + \frac{1}{\pi} \log \frac{T}{2\pi} - \frac{T}{2\pi} + \frac{7}{8} + S(T) + O\left(\frac{1}{T}\right).$$

How many zeros does $\zeta_X(s)$ have? Write

$$\zeta_X(1/2 + it) = P_X(1/2 + it) \left(1 + \chi(1/2 + it) \frac{P_X(1/2 - it)}{P_X(1/2 + it)}\right).$$
The Number of Zeros of $\zeta_X(s)$

The number of zeros of $\zeta(s)$ up to height T is

$$N(T) = -\frac{1}{2\pi} \arg \chi(1/2 + iT) + \frac{1}{\pi} \arg \zeta(1/2 + iT) + 1$$

$$= \frac{T}{2\pi} \log \frac{T}{2\pi} - \frac{T}{2\pi} + \frac{7}{8} + S(T) + O\left(\frac{1}{T}\right).$$

How many zeros does $\zeta_X(s)$ have? Write

$$\zeta_X(1/2 + it) = P_X(1/2 + it) \left(1 + \chi(1/2 + it) \frac{P_X(1/2 - it)}{P_X(1/2 + it)}\right)$$

$$= P_X(1/2 + it) \left(1 + e^{2\pi i \left(\frac{1}{2\pi} \arg \chi(1/2+it) - \frac{1}{\pi} \arg P_X(1/2+it)\right)}\right).$$
The Number of Zeros of $\zeta_X(s)$

The number of zeros of $\zeta(s)$ up to height T is

$$N(T) = -\frac{1}{2\pi} \arg \chi(1/2 + iT) + \frac{1}{\pi} \arg \zeta(1/2 + iT) + 1$$

$$= \frac{T}{2\pi} \log \frac{T}{2\pi} - \frac{T}{2\pi} + \frac{7}{8} + S(T) + O\left(\frac{1}{T}\right).$$

How many zeros does $\zeta_X(s)$ have? Write

$$\zeta_X(1/2 + it) = P_X(1/2 + it) \left(1 + \chi(1/2 + it) \frac{P_X(1/2 - it)}{P_X(1/2 + it)} \right)$$

$$= P_X(1/2 + it) \left(1 + e^{2\pi i \left(\frac{1}{2\pi} \arg \chi(1/2 + it) - \frac{1}{\pi} \arg P_X(1/2 + it)\right)} \right).$$

This vanishes if and only if

$$\frac{1}{2\pi} \arg \chi(1/2 + it) - \frac{1}{\pi} \arg P_X(1/2 + it) \equiv 1/2 \pmod{1}.$$
Detecting Zeros of $\zeta_X(s)$

Set

$$F_X(t) = -\frac{1}{2\pi} \arg \chi(1/2 + it) + \frac{1}{\pi} \arg P_X(1/2 + it).$$
Detecting Zeros of $\zeta_X(s)$

Set

$$F_X(t) = -\frac{1}{2\pi} \arg \chi(1/2 + it) + \frac{1}{\pi} \arg P_X(1/2 + it).$$

Then the zeros of

$$\zeta_X(1/2 + it) = P_X(1/2 + it)(1 + e^{-2\pi i F_X(t)})$$

are the solutions of $F_X(t) \equiv 1/2 \pmod{1}$.
Detecting Zeros of $\zeta_X(s)$

Set

$$F_X(t) = -\frac{1}{2\pi} \arg \chi(1/2 + it) + \frac{1}{\pi} \arg P_X(1/2 + it) .$$

Then the zeros of

$$\zeta_X(1/2 + it) = P_X(1/2 + it)(1 + e^{-2\pi i F_X(t)})$$

are the solutions of $F_X(t) \equiv 1/2 \pmod{1}$. Now

$$\arg \chi(1/2 + it) = -t \log \frac{t}{2\pi} + t + \frac{1}{4\pi} + O\left(\frac{1}{t}\right)$$
Detecting Zeros of $\zeta_X(s)$

Set

$$F_X(t) = -\frac{1}{2\pi} \arg \chi(1/2 + it) + \frac{1}{\pi} \arg P_X(1/2 + it).$$

Then the zeros of

$$\zeta_X(1/2 + it) = P_X(1/2 + it)(1 + e^{-2\pi i F_X(t)})$$

are the solutions of $F_X(t) \equiv 1/2 \pmod{1}$. Now

$$\arg \chi(1/2 + it) = -t \log \frac{t}{2\pi} + t + \frac{1}{4\pi} + O\left(\frac{1}{t}\right)$$

and

$$\arg P_X(1/2 + it) = \text{Im} \log P_X(1/2 + it) = \text{Im} \sum_{n \leq X^2} \frac{\Lambda_X(n)}{n^{1/2+it} \log n}$$

$$= - \sum_{n \leq X^2} \frac{\Lambda_X(n) \sin(t \log n)}{n^{1/2} \log n}.$$
Lower Bound for the Number of Zeros

So

\[F_X(t) = \frac{1}{2\pi} t \log \frac{t}{2\pi} - \frac{t}{2\pi} - \frac{1}{8} - \frac{1}{\pi} \sum_{n \leq X^2} \frac{\Lambda_X(n) \sin(t \log n)}{n^{1/2} \log n} + O\left(\frac{1}{t}\right). \]
So

\[F_X(t) = \frac{1}{2\pi} t \log \frac{t}{2\pi} - \frac{t}{2\pi} - \frac{1}{8} - \frac{1}{\pi} \sum_{n \leq X^2} \frac{\Lambda_X(n) \sin(t \log n)}{n^{1/2} \log n} + O\left(\frac{1}{t}\right). \]

Ignoring the \(O(1/t) \), the condition that \(\zeta_X(1/2 + it) = 0 \) is that this is \(\equiv 1/2 \mod 1 \).
So

\[F_X(t) = \frac{1}{2\pi} t \log \frac{t}{2\pi} - \frac{t}{2\pi} - \frac{1}{8} - \frac{1}{\pi} \sum_{n \leq X^2} \Lambda_X(n) \sin(t \log n) \frac{n^{1/2} \log n}{n^{1/2} \log n} + O \left(\frac{1}{t} \right). \]

Ignoring the \(O(1/t) \), the condition that \(\zeta_X(1/2 + it) = 0 \) is that this is \(\equiv 1/2 \pmod{1} \).

If \(N_X(T) \) denotes the number of times this happens in \([0, T]\), we have the
So

\[F_X(t) = \frac{1}{2\pi} t \log \frac{t}{2\pi} - \frac{t}{2\pi} - \frac{1}{8} - \frac{1}{\pi} \sum_{n \leq X^2} \frac{\Lambda_X(n) \sin(t \log n)}{n^{1/2} \log n} + O\left(\frac{1}{t}\right). \]

Ignoring the \(O(1/t) \), the condition that \(\zeta_X(1/2 + it) = 0 \) is that this is \(\equiv 1/2 \ (\mod 1) \).

If \(N_X(T) \) denotes the number of times this happens in \([0, T]\), we have the

Theorem

\[N_X(T) \geq \frac{T}{2\pi} \log \frac{T}{2\pi} - \frac{T}{2\pi} - \frac{1}{\pi} \sum_{n \leq X^2} \frac{\Lambda_X(n) \sin(T \log n)}{n^{1/2} \log n} + O(1). \]
Lower Bound for the Number of Zeros

So

$$F_X(t) = \frac{1}{2\pi} t \log \frac{t}{2\pi} - \frac{t}{2\pi} - \frac{1}{8} - \frac{1}{\pi} \sum_{n \leq X^2} \Lambda_X(n) \frac{\sin(t \log n)}{n^{1/2} \log n} + O\left(\frac{1}{t}\right).$$

Ignoring the $O(1/t)$, the condition that $\zeta_X(1/2 + it) = 0$ is that this is $\equiv 1/2 \pmod{1}$.

If $N_X(T)$ denotes the number of times this happens in $[0, T]$, we have the

Theorem

$$N_X(T) \geq \frac{T}{2\pi} \log \frac{T}{2\pi} - \frac{T}{2\pi} - \frac{1}{\pi} \sum_{n \leq X^2} \Lambda_X(n) \frac{\sin(T \log n)}{n^{1/2} \log n} + O(1).$$

How large can the sum be?
Admissible Functions

Call an increasing function $\Phi(t)$ *admissible* if

\[|S(t)| \leq \Phi(t) \quad \text{and} \quad |\zeta(1/2 + it)| \ll \exp(\Phi(t)). \]
Call an increasing function $\Phi(t)$ *admissible* if

$$\left| S(t) \right| \leq \Phi(t) \quad \text{and} \quad \left| \zeta(1/2 + it) \right| \ll \exp(\Phi(t)).$$
Call an increasing function $\Phi(t)$ \textit{admissible} if

$$|S(t)| \leq \Phi(t) \quad \text{and} \quad |\zeta(1/2 + it)| \ll \exp(\Phi(t)).$$

Montgomery on RH and then Balasubramanian and Ramachandra unconditionally showed that

$$\Phi(t) = \Omega(\sqrt{\log t / \log \log t}).$$
Call an increasing function $\Phi(t)$ \textit{admissible} if

$$|S(t)| \leq \Phi(t) \quad \text{and} \quad |\zeta(1/2 + it)| \ll \exp(\Phi(t)).$$

Montgomery on RH and then Balasubramanian and Ramachandra unconditionally showed that

$$\Phi(t) = \Omega\left(\sqrt{\log t / \log \log t}\right).$$

- $\Phi(t) = C \log t$ is admissible
Call an increasing function $\Phi(t)$ *admissible* if

$$|S(t)| \leq \Phi(t) \quad \text{and} \quad |\zeta(1/2 + it)| \ll \exp(\Phi(t)).$$

Montgomery on RH and then Balasubramanian and Ramachandra unconditionally showed that

$$\Phi(t) = \Omega(\sqrt{\log t / \log \log t}).$$

- $\Phi(t) = C \log t$ is admissible
- $\Phi(t) = \epsilon \log t$ is admissible on LH
Admissible Functions

Call an increasing function $\Phi(t)$ *admissible* if

$$|S(t)| \leq \Phi(t) \quad \text{and} \quad |\zeta(1/2 + it)| \ll \exp(\Phi(t)).$$

Montgomery on RH and then Balasubramanian and Ramachandra unconditionally showed that

$$\Phi(t) = \Omega(\sqrt{\log t/\log \log t}).$$

- $\Phi(t) = C \log t$ is admissible
- $\Phi(t) = \epsilon \log t$ is admissible on LH
- $\Phi(t) = (1/2 + \epsilon) \log t / \log \log t$ is admissible on RH.
Conjecture (Farmer, G., Hughes)

\(\Phi(t) = \sqrt{\frac{1}{2} + \epsilon} \log t \log \log t \) is admissible, but
\(\Phi(t) = \sqrt{\frac{1}{2} - \epsilon} \log t \log \log t \) is not.
Conjecture (Farmer, G., Hughes)

\[\Phi(t) = \sqrt{\frac{1}{2} + \epsilon} \log t \log \log t \text{ is admissible, but} \]
\[\Phi(t) = \sqrt{\frac{1}{2} - \epsilon} \log t \log \log t \text{ is not.} \]

In terms of admissible functions we have
The Sum on RH

Conjecture (Farmer, G., Hughes)

\[\Phi(t) = \sqrt{\frac{1}{2} + \epsilon} \log t \log \log t \text{ is admissible, but} \]
\[\Phi(t) = \sqrt{\frac{1}{2} - \epsilon} \log t \log \log t \text{ is not}. \]

In terms of admissible functions we have

Theorem

Assume RH. Then

\[\frac{1}{\pi} \sum_{n \leq X^2} \frac{\Lambda_X(n) \sin(t \log n)}{n^{1/2} \log n} \ll \Phi(t) + O \left(\frac{\log t}{\log X} \right). \]
The Sum on RH

Conjecture (Farmer, G., Hughes)

\[\Phi(t) = \sqrt{\frac{1}{2} + \epsilon} \log t \log \log t \text{ is admissible, but} \]
\[\Phi(t) = \sqrt{\frac{1}{2} - \epsilon} \log t \log \log t \text{ is not}. \]

In terms of admissible functions we have

Theorem

Assume RH. Then

\[\frac{1}{\pi} \sum_{n \leq X^2} \frac{\Lambda_X(n) \sin(t \log n)}{n^{1/2} \log n} \ll \Phi(t) + O \left(\frac{\log t}{\log X} \right). \]

This is \(\ll \Phi(t) \) if \(X \geq \exp(c \log t/\Phi(t)) \) for some \(c > 0 \).

(Same bound as for \(S(t) \)!)
If $F_X(t)$ is not monotonically increasing, there could be “extra” solutions of

$$F_X(t) \equiv 1/2 \pmod{1},$$

and so of $\zeta_X(1/2 + it) = 0$.
If $F_X(t)$ is not monotonically increasing, there could be “extra” solutions of

$$F_X(t) \equiv 1/2 \pmod{1},$$

and so of $\zeta_X(1/2 + it) = 0$.

Now

$$F_X'(t) = \frac{1}{2\pi} \log \frac{t}{2\pi} - \frac{1}{\pi} \sum_{n \leq X^2} \Lambda_X(n) \cos(t \log n) \frac{n^{1/2}}{n^{1/2}} + O\left(\frac{1}{t^2}\right).$$
Extra Solutions

If \(F_X(t) \) is not monotonically increasing, there could be “extra” solutions of

\[
F_X(t) \equiv 1/2 \pmod{1},
\]

and so of \(\zeta_X(1/2 + it) = 0. \)

Now

\[
F_X'(t) = \frac{1}{2\pi} \log \frac{t}{2\pi} - \frac{1}{\pi} \sum_{n \leq X^2} \frac{\Lambda_X(n) \cos(t \log n)}{n^{1/2}} + O\left(\frac{1}{t^2}\right).
\]

On RH the sum is \(\ll \Phi(t) \log X. \)
If $F_X(t)$ is not monotonically increasing, there could be “extra” solutions of

$$F_X(t) \equiv 1/2 \pmod{1},$$

and so of $\zeta_X(1/2 + it) = 0$.

Now

$$F_X'(t) = \frac{1}{2\pi} \log \frac{t}{2\pi} - \frac{1}{\pi} \sum_{n \leq X^2} \Lambda_X(n) \cos(t \log n) \frac{\Lambda_X(n)}{n^{1/2}} + O\left(\frac{1}{t^2}\right).$$

On RH the sum is $\ll \Phi(t) \log X$.

Thus, on RH there is a positive constant C, such that $F_X(t)$ is strictly increasing if

$$X < \exp\left(\frac{C \log t}{\Phi(t)}\right).$$
There are No Extra Solutions When X is Small

We therefore have the

Theorem

Assume RH. There is a constant \(C > 0 \) such that if \(X < \exp(C \log t / \Phi(t)) \), then

\[
N_X(t) = t^2 \pi \log t^2 \pi - t^2 \pi - \frac{1}{\pi} \sum_{n \leq X} \Lambda_X(n) \sin(t \log n) n^{1/2} \log n + O(1).
\]

Unconditionally we can take \(X \) larger, but then we only obtain an asymptotic estimate.

Theorem

If \(X \leq t_0(1) \), then

\[
N_X(t) \sim t^2 \pi \log t^2 \pi.
\]
There are No Extra Solutions When X is Small

We therefore have the

Theorem

Assume RH. There is a constant $C > 0$ such that if $X < \exp \left(C \log t / \Phi(t) \right)$, then

$$N_X(t) = \frac{t}{2\pi} \log \frac{t}{2\pi} - \frac{t}{2\pi} - \frac{1}{\pi} \sum_{n \leq X^2} \frac{\Lambda_X(n) \sin(t \log n)}{n^{1/2} \log n} + O(1).$$
There are No Extra Solutions When X is Small

We therefore have the

Theorem

Assume RH. There is a constant $C > 0$ such that if $X < \exp \left(C \log t / \Phi(t) \right)$, then

$$N_X(t) = \frac{t}{2\pi} \log \frac{t}{2\pi} - \frac{t}{2\pi} - \frac{1}{\pi} \sum_{n \leq X^2} \Lambda_X(n) \sin(t \log n) \frac{n^{1/2} \log n}{n^{1/2} \log n} + O(1).$$

Unconditionally we can take X larger, but then we only obtain an asymptotic estimate.
There are No Extra Solutions When X is Small

We therefore have the

Theorem

Assume RH. There is a constant $C > 0$ such that if $X < \exp(C \log t/\Phi(t))$, then

$$N_X(t) = \frac{t}{2\pi} \log \frac{t}{2\pi} - \frac{t}{2\pi} - \frac{1}{\pi} \sum_{n \leq X^2} \frac{\Lambda_X(n) \sin(t \log n)}{n^{1/2} \log n} + O(1).$$

Unconditionally we can take X larger, but then we only obtain an asymptotic estimate.

Theorem

If $X \leq t^{o(1)}$, then

$$N_X(t) \sim \frac{t}{2\pi} \log \frac{t}{2\pi}.$$
Simple Zeros of $\zeta_X(s)$

$1/2 + i\gamma$ is a simple zero of $\zeta_X(s)$ if $\zeta_X(1/2 + i\gamma) = 0$, but $\zeta'_X(1/2 + i\gamma) \neq 0$.

This vanishes at $1/2 + i\gamma$ if and only if $F'_X(\gamma) = 0$.

(University of Rochester)
Simple Zeros of $\zeta_X(s)$

1/2 + i\gamma is a simple zero of $\zeta_X(s)$ if $\zeta_X(1/2 + i\gamma) = 0$, but $\zeta_X'(1/2 + i\gamma) \neq 0$. Now

$$\zeta_X(1/2 + it) = P_X(1/2 + it) \left(1 + \chi(1/2 + it) \frac{P_X(1/2 - it)}{P_X(1/2 + it)} \right)$$

$$= P_X(1/2 + it) \left(1 + e^{-2\pi i F_X(t)} \right),$$
Simple Zeros of $\zeta_X(s)$

$1/2 + i\gamma$ is a simple zero of $\zeta_X(s)$ if $\zeta_X(1/2 + i\gamma) = 0$, but $\zeta_X(1/2 + i\gamma) \neq 0$. Now

$$\zeta_X(1/2 + it) = P_X(1/2 + it) \left(1 + \chi(1/2 + it) \frac{P_X(1/2 - it)}{P_X(1/2 + it)} \right)$$

$$= P_X(1/2 + it) \left(1 + e^{-2\pi i F_X(t)} \right),$$

and
Simple Zeros of $\zeta_X(s)$

$1/2 + i\gamma$ is a simple zero of $\zeta_X(s)$ if $\zeta_X(1/2 + i\gamma) = 0$, but $\zeta_X'(1/2 + i\gamma) \neq 0$. Now

$$\zeta_X(1/2 + it) = P_X(1/2 + it) \left(1 + \chi(1/2 + it) \frac{P_X(1/2 - it)}{P_X(1/2 + it)}\right)$$

$$= P_X(1/2 + it) \left(1 + e^{-2\pi i F_X(t)}\right),$$

and

$$\zeta_X'(1/2 + it) = P_X'(1/2 + it) \left(1 + e^{-2\pi i F_X(t)}\right)$$

$$- 2\pi P_X(1/2 + it) F_X'(t) e^{-2\pi i F_X(t)}.$$
1/2 + iγ is a simple zero of \(\zeta_X(s) \) if \(\zeta_X(1/2 + i\gamma) = 0 \), but \(\zeta'_X(1/2 + i\gamma) \neq 0 \). Now

\[
\zeta_X(1/2 + it) = P_X(1/2 + it) \left(1 + \chi(1/2 + it) \frac{P_X(1/2 - it)}{P_X(1/2 + it)} \right)
\]

\[
= P_X(1/2 + it) \left(1 + e^{-2\pi i F_X(t)} \right),
\]

and

\[
\zeta'_X(1/2 + it) = P'_X(1/2 + it) \left(1 + e^{-2\pi i F_X(t)} \right)
\]

\[
- 2\pi P_X(1/2 + it) F'_X(t) e^{-2\pi i F_X(t)}. \]

This vanishes at 1/2 + iγ if and only if \(F'_X(\gamma) = 0 \).
The Number of Simple Zeros When X is Small

Recall that if X is not too large,

$$F'_X(t) = \frac{1}{2\pi} \log \frac{t}{2\pi} - \frac{1}{\pi} \sum_{n \leq X^2} \frac{\Lambda_X(n) \cos(t \log n)}{n^{1/2}} + O\left(\frac{1}{t^2}\right) > 0.$$
Recall that if \(X \) is not too large,

\[
F_X'(t) = \frac{1}{2\pi} \log \frac{t}{2\pi} - \frac{1}{\pi} \sum_{n \leq X^2} \frac{\Lambda_X(n) \cos(t \log n)}{n^{1/2}} + O\left(\frac{1}{t^2}\right) > 0.
\]

Thus we have the

Theorem

Assume RH. There is a constant \(C > 0 \) such that if \(X < \exp\left(C \frac{\log t}{\Phi(t)} \right) \), all the zeros of \(\zeta_X(1/2 + it) \) with imaginary part \(\geq 10 \) are simple.

Unconditionally we have

Theorem

If \(X \leq \exp\left(o\left(\log 1 - \epsilon t\right)\right) \), then \(\zeta_X(1/2 + it) \) has \(\sim T/2\pi \log (T/2\pi) \) simple zeros up to height \(T \).
Recall that if X is not too large,

\[F_X'(t) = \frac{1}{2\pi} \log \frac{t}{2\pi} - \frac{1}{\pi} \sum_{n \leq X^2} \Lambda_X(n) \cos(t \log n) \frac{n^{1/2}}{n^{1/2}} + O\left(\frac{1}{t^2}\right) > 0. \]

Thus we have the

Theorem

Assume RH. There is a constant $C > 0$ such that if $X < \exp\left(C \log t / \Phi(t)\right)$, all the zeros of $\zeta_X(1/2 + it)$ with imaginary part ≥ 10 are simple.
The Number of Simple Zeros When X is Small

Recall that if X is not too large,

$$F_X'(t) = \frac{1}{2\pi} \log \frac{t}{2\pi} - \frac{1}{\pi} \sum_{n \leq X^2} \frac{\Lambda_X(n) \cos(t \log n)}{n^{1/2}} + O\left(\frac{1}{t^2}\right) > 0.$$

Thus we have the

Theorem

Assume RH. There is a constant $C > 0$ such that if $X < \exp\left(C \log t / \Phi(t)\right)$, all the zeros of $\zeta_X(1/2 + it)$ with imaginary part ≥ 10 are simple.

Unconditionally we have
The Number of Simple Zeros When X is Small

Recall that if X is not too large,

$$F'_X(t) = \frac{1}{2\pi} \log \frac{t}{2\pi} - \frac{1}{\pi} \sum_{n \leq X^2} \frac{\Lambda_X(n) \cos(t \log n)}{n^{1/2}} + O\left(\frac{1}{t^2}\right) > 0.$$

Thus we have the

Theorem

Assume RH. There is a constant $C > 0$ such that if $X < \exp\left(C \log t / \Phi(t)\right)$, all the zeros of $\zeta_X(1/2 + it)$ with imaginary part ≥ 10 are simple.

Unconditionally we have

Theorem

If $X \leq \exp\left(o(\log^{1-\epsilon} t)\right)$, then $\zeta_X(1/2 + it)$ has $\sim \frac{T}{2\pi} \log \left(\frac{T}{2\pi}\right)$ simple zeros up to height T.
Simple Zeros of $\zeta_X(s)$ When X is Large

A zero γ of $\zeta_X(s)$ is simple if and only if $F_X'(\gamma) \neq 0$.

We have just seen that on RH $F_X'(t) > 0$ if $X < \exp(C \log t / \Phi(t))$ (for some C), so all zeros are simple.

But even when X is very large, the odds that $F_X'(\gamma) = 0$ are quite small.
A zero $1/2 + i\gamma$ of $\zeta_X(s)$ is simple if and only if $F'_X(\gamma) \neq 0$.
A zero $1/2 + i\gamma$ of $\zeta_X(s)$ is simple if and only if $F_X'(\gamma) \neq 0$.

- We have just seen that on RH $F_X'(t) > 0$ if $X < \exp \left(C \log t / \Phi(t) \right)$ (for some C), so all zeros are simple.
Simple Zeros of $\zeta_X(s)$ When X is Large

A zero $1/2 + i\gamma$ of $\zeta_X(s)$ is simple if and only if $F'_X(\gamma) \neq 0$.

- We have just seen that on RH $F'_X(t) > 0$ if $X < \exp\left(C \log t / \Phi(t)\right)$ (for some C), so all zeros are simple.

- But even when X is very large, the odds that $F'_X(\gamma) = 0$ are quite small.
III. The Relation Between $\zeta(s)$ and $\zeta_X(s)$
Comparing $\zeta(s)$ and $\zeta_X(s)$

Here are graphs of $|\zeta(\frac{1}{2} + it)|$ and $|\zeta_X(\frac{1}{2} + it)|$:

Figure: Graphs of $|\zeta(\frac{1}{2} + it)|$ (solid) and $|\zeta_X(\frac{1}{2} + it)|$ (dotted) near $t = 114$ for $X = 10$ and $X = 300$, respectively.
Comparing $\zeta(s)$ and $\zeta_X(s)$

Here are graphs of $2|\zeta(1/2 + it)|$ and $|\zeta_X(1/2 + it)|$:

![Graphs of $2|\zeta(1/2 + it)|$ and $|\zeta_X(1/2 + it)|$ for $X=10$ and $X=300$, respectively.](image-url)
Comparing $\zeta(s)$ and $\zeta_X(s)$

Here are graphs of $2|\zeta(1/2 + it)|$ and $|\zeta_X(1/2 + it)|$:

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{graphs}
\caption{Graphs of $2|\zeta(1/2 + it)|$ (solid) and $|\zeta_X(1/2 + it)|$ (dotted) near $t = 114$ for $X = 10$ and $X = 300$, respectively.}
\end{figure}
Figure: Graphs of $2|\zeta(\frac{1}{2} + it)|$ (solid) and $|\zeta_X(\frac{1}{2} + it)|$ (dotted) near $t = 2000$ for $X = 10$ and $X = 300$, respectively.
Comparing $\zeta(s)$ and $\zeta_X(s)$

There are two striking features:

1. Zeros of $\zeta_X\left(\frac{1}{2} + it\right)$ and $\zeta\left(\frac{1}{2} + it\right)$ are close, even for small values of X.
2. $|\zeta_X\left(\frac{1}{2} + it\right)|$ seems to approach $2|\zeta\left(\frac{1}{2} + it\right)|$ as X increases.

Why?
Comparing $\zeta(s)$ and $\zeta_X(s)$

There are two striking features:

- Zeros of $\zeta_X(1/2 + it)$ and $\zeta(1/2 + it)$ are close, even for small values of X.
Comparing $\zeta(s)$ and $\zeta_X(s)$

There are two striking features:

- Zeros of $\zeta_X(1/2 + it)$ and $\zeta(1/2 + it)$ are close, even for small values of X.
- $|\zeta_X(1/2 + it)|$ seems to approach $2|\zeta(1/2 + it)|$ as X increases.
Comparing $\zeta(s)$ and $\zeta_X(s)$

There are two striking features:

- Zeros of $\zeta_X(1/2 + it)$ and $\zeta(1/2 + it)$ are close, even for small values of X.

- $|\zeta_X(1/2 + it)|$ seems to approach $2 |\zeta(1/2 + it)|$ as X increases.

Why?
The Heuristic Reason Why

\[|\zeta_X(1/2 + it)| \approx 2 |\zeta(1/2 + it)| \]
The Heuristic Reason Why

\[|\zeta_X(1/2 + it)| \approx 2 |\zeta(1/2 + it)| \]

\(P_X(s)\) approximates \(\zeta(s)\) in \(\sigma > 1/2\).
The Heuristic Reason Why
$|\zeta_X(1/2 + it)| \approx 2 |\zeta(1/2 + it)|$

$P_X(s)$ approximates $\zeta(s)$ in $\sigma > 1/2$.

Since $\chi(s)$ is small in $\sigma > 1/2$, $\zeta_X(s) = P_X(s) + \chi(s)P_X(\overline{s})$ also approximates $\zeta(s)$.
The Heuristic Reason Why
\[|\zeta_X(1/2 + it)| \approx 2 |\zeta(1/2 + it)| \]

\[P_X(s) \text{ approximates } \zeta(s) \text{ in } \sigma > 1/2. \]

Since \(\chi(s) \) is small in \(\sigma > 1/2 \), \(\zeta_X(s) = P_X(s) + \chi(s)P_X(\overline{s}) \) also approximates \(\zeta(s) \).

But \(\zeta_X(s) \) approximates \(\mathcal{F}(s) = \zeta(s) + \chi(s)\zeta(\overline{s}) \) even better.
The Heuristic Reason Why
$|ζ_X(1/2 + it)| \approx 2 |ζ(1/2 + it)|$

$P_X(s)$ approximates $ζ(s)$ in $σ > 1/2$.

Since $χ(s)$ is small in $σ > 1/2$, $ζ_X(s) = P_X(s) + χ(s)P_X(\overline{s})$ also approximates $ζ(s)$.

But $ζ_X(s)$ approximates $\mathcal{F}(s) = ζ(s) + χ(s)ζ(\overline{s})$ even better.

On $σ = 1/2$
The Heuristic Reason Why

\[|\zeta_X(1/2 + it)| \approx 2 |\zeta(1/2 + it)| \]

\(P_X(s) \) approximates \(\zeta(s) \) in \(\sigma > 1/2 \).

Since \(\chi(s) \) is small in \(\sigma > 1/2 \),
\[\zeta_X(s) = P_X(s) + \chi(s)P_X(\overline{s}) \]
also approximates \(\zeta(s) \).

But \(\zeta_X(s) \) approximates
\[\mathcal{F}(s) = \zeta(s) + \chi(s)\overline{\zeta(s)} \]
even better.

On \(\sigma = 1/2 \)
\[\mathcal{F}(1/2 + it) = \zeta(1/2 + it) + \chi(1/2 + it)\overline{\zeta(1/2 - it)} \]
The Heuristic Reason Why

\[|\zeta_X(1/2 + it)| \approx 2 |\zeta(1/2 + it)| \]

\(P_X(s) \) approximates \(\zeta(s) \) in \(\sigma > 1/2 \).

Since \(\chi(s) \) is small in \(\sigma > 1/2 \), \(\zeta_X(s) = P_X(s) + \chi(s)P_X(\overline{s}) \) also approximates \(\zeta(s) \).

But \(\zeta_X(s) \) approximates \(\mathcal{F}(s) = \zeta(s) + \chi(s)\zeta(\overline{s}) \) even better.

On \(\sigma = 1/2 \)

\[
\mathcal{F}(1/2 + it) = \zeta(1/2 + it) + \chi(1/2 + it)\zeta(1/2 - it) \\
= \zeta(1/2 + it) + \zeta(1/2 + it)
\]
The Heuristic Reason Why
\[|\zeta_X(1/2 + it)| \approx 2 |\zeta(1/2 + it)| \]

\(P_X(s)\) approximates \(\zeta(s)\) in \(\sigma > 1/2\).

Since \(\chi(s)\) is small in \(\sigma > 1/2\), \(\zeta_X(s) = P_X(s) + \chi(s)P_X(\bar{s})\) also approximates \(\zeta(s)\).

But \(\zeta_X(s)\) approximates \(\mathcal{F}(s) = \zeta(s) + \chi(s)\zeta(\bar{s})\) even better.

On \(\sigma = 1/2\)

\[
\mathcal{F}(1/2 + it) = \zeta(1/2 + it) + \chi(1/2 + it)\zeta(1/2 - it)
\]
\[
= \zeta(1/2 + it) + \zeta(1/2 + it)
\]
\[
= 2\zeta(1/2 + it).
\]
The Heuristic Reason Why
\[|\zeta_X(1/2 + it)| \approx 2 |\zeta(1/2 + it)| \]

\(P_X(s)\) approximates \(\zeta(s)\) in \(\sigma > 1/2\).

Since \(\chi(s)\) is small in \(\sigma > 1/2\), \(\zeta_X(s) = P_X(s) + \chi(s)P_X(\overline{s})\) also approximates \(\zeta(s)\).

But \(\zeta_X(s)\) approximates \(\mathcal{F}(s) = \zeta(s) + \chi(s)\zeta(\overline{s})\) even better.

On \(\sigma = 1/2\)

\[
\mathcal{F}(1/2 + it) = \zeta(1/2 + it) + \chi(1/2 + it)\zeta(1/2 - it) \\
= \zeta(1/2 + it) + \zeta(1/2 + it) \\
= 2\zeta(1/2 + it).
\]

In fact, this suggests that \(\zeta_X(1/2 + it) \approx 2 \zeta(1/2 + it)\).
Why Zeros of $\zeta_X(s)$ and $\zeta(s)$ are Close

$$F_X(t) = -\frac{1}{2\pi} \arg \chi(1/2 + it) + S(t) - \frac{1}{\pi} \text{Im} \sum_{\gamma} F_2(i(t - \gamma) \log X) + E$$
Why Zeros of $\zeta_X(s)$ and $\zeta(s)$ are Close

$F_X(t) = -\frac{1}{2\pi} \arg \chi(1/2 + it) + S(t) - \frac{1}{\pi} \text{Im} \sum_{\gamma} F_2(i(t - \gamma) \log X) + E$

$= N(t) - 1 - \frac{1}{\pi} \text{Im} \sum_{\gamma} F_2(i(t - \gamma) \log X) + E.$
Why Zeros of $\zeta_X(s)$ and $\zeta(s)$ are Close

\[
F_X(t) = -\frac{1}{2\pi} \arg \chi(1/2 + it) + S(t) - \frac{1}{\pi} \text{Im} \sum_{\gamma} F_2(i(t - \gamma) \log X) + E
\]

\[
= N(t) - 1 - \frac{1}{\pi} \text{Im} \sum_{\gamma} F_2(i(t - \gamma) \log X) + E.
\]

Zeros of $\zeta_X(1/2 + it)$ occur when $F_X(t) \equiv 1/2 \pmod{1}$.
Why Zeros of $\zeta_X(s)$ and $\zeta(s)$ are Close

\[F_X(t) = -\frac{1}{2\pi} \arg \chi(1/2 + it) + S(t) - \frac{1}{\pi} \text{Im} \sum_{\gamma} F_2(i(t - \gamma) \log X) + E \]

\[= N(t) - 1 - \frac{1}{\pi} \text{Im} \sum_{\gamma} F_2(i(t - \gamma) \log X) + E. \]

Zeros of $\zeta_X(1/2 + it)$ occur when $F_X(t) \equiv 1/2 \pmod{1}$.

$N(t) - 1$ is an integer between zeros of $\zeta(s)$.
Why Zeros of $\zeta_X(s)$ and $\zeta(s)$ are Close

$$F_X(t) = -\frac{1}{2\pi} \arg \chi(1/2 + it) + S(t) - \frac{1}{\pi} \text{Im} \sum_{\gamma} F_2(i(t - \gamma) \log X) + E$$

$$= N(t) - 1 - \frac{1}{\pi} \text{Im} \sum_{\gamma} F_2(i(t - \gamma) \log X) + E.$$

Zeros of $\zeta_X(1/2 + it)$ occur when $F_X(t) \equiv 1/2 \pmod{1}$.

$N(t) - 1$ is an integer between zeros of $\zeta(s)$.

If the sum over zeros is small, $F_X(t) \equiv 1/2 \pmod{1}$ cannot happen.
Why Zeros of $\zeta_X(s)$ and $\zeta(s)$ are Close

$$F_X(t) = -\frac{1}{2\pi} \arg \chi(1/2 + it) + S(t) - \frac{1}{\pi} \text{Im} \sum_{\gamma} F_2(i(t - \gamma) \log X) + E$$

$$= N(t) - 1 - \frac{1}{\pi} \text{Im} \sum_{\gamma} F_2(i(t - \gamma) \log X) + E.$$

Zeros of $\zeta_X(1/2 + it)$ occur when $F_X(t) \equiv 1/2 \pmod{1}$.

$N(t) - 1$ is an integer between zeros of $\zeta(s)$.

If the sum over zeros is small, $F_X(t) \equiv 1/2 \pmod{1}$ cannot happen.

If t is in a closed subinterval \mathcal{I} between two consecutive zeros, the sum is
Why Zeros of $\zeta_X(s)$ and $\zeta(s)$ are Close

$$F_X(t) = -\frac{1}{2\pi} \arg \chi(1/2 + it) + S(t) - \frac{1}{\pi} \text{Im} \sum_{\gamma} F_2(i(t - \gamma) \log X) + E$$

$$= N(t) - 1 - \frac{1}{\pi} \text{Im} \sum_{\gamma} F_2(i(t - \gamma) \log X) + E.$$

Zeros of $\zeta_X(1/2 + it)$ occur when $F_X(t) \equiv 1/2 \pmod{1}$.

$N(t) - 1$ is an integer between zeros of $\zeta(s)$.

If the sum over zeros is small, $F_X(t) \equiv 1/2 \pmod{1}$ cannot happen.

If t is in a closed subinterval I between two consecutive zeros, the sum is

$$\ll_I \frac{1}{\log^2 X} \sum_{\gamma} \frac{1}{(t - \gamma)^2} \to 0 \quad \text{as} \quad X \to \infty.$$
Theorem Relating $\zeta_X(s)$ and $\zeta(s)$

A similar argument shows that

$$\zeta_X\left(\frac{1}{2} + it\right) \rightarrow 2 \zeta\left(\frac{1}{2} + it\right)$$

as $X \rightarrow \infty$, and

$$\zeta_X\left(\frac{1}{2} + it\right)$$

has no zeros in I for X sufficiently large.
A similar argument shows that $\zeta_X(1/2 + it) \to 2 \zeta(1/2 + it)$.
Theorem Relating $\zeta_X(s)$ and $\zeta(s)$

A similar argument shows that $\zeta_X(1/2 + it) \to 2 \zeta(1/2 + it)$.

Theorem

Assume RH. Let I be a closed interval between two consecutive zeros of $\zeta(s)$ and let $t \in I$. Then
Theorem Relating $\zeta_X(s)$ and $\zeta(s)$

A similar argument shows that $\zeta_X(1/2 + it) \rightarrow 2 \zeta(1/2 + it)$.

Theorem

Assume RH. Let \mathcal{I} be a closed interval between two consecutive zeros of $\zeta(s)$ and let $t \in \mathcal{I}$. Then

- $\zeta_X(1/2 + it) \rightarrow 2\zeta(1/2 + it)$ as $X \rightarrow \infty$, and
Theorem Relating $\zeta_X(s)$ and $\zeta(s)$

A similar argument shows that $\zeta_X(1/2 + it) \to 2 \zeta(1/2 + it)$.

Theorem

Assume RH. Let I be a closed interval between two consecutive zeros of $\zeta(s)$ and let $t \in I$. Then

- $\zeta_X(1/2 + it) \to 2 \zeta(1/2 + it)$ as $X \to \infty$, and
- $\zeta_X(1/2 + it)$ has no zeros in I for X sufficiently large.
Jon Keating studied $\zeta_{t/2\pi}(s)$ restricted to the one-half line in the early 90's.
Jon Keating studied $\zeta_{t/2\pi}(s)$ restricted to the one-half line in the early 90’s.

He noticed that the zeros are quite close to those of the zeta-function.
Jon Keating studied $\zeta_{t/2\pi}(s)$ restricted to the one-half line in the early 90's.

He noticed that the zeros are quite close to those of the zeta-function.

Later Jon Keating and Eugene Bogomolny used $\zeta_{t/2\pi}(1/2 + it)$ as a heuristic tool for calculating the pair correlation function of the zeros of $\zeta(s)$.
The general problem is to see what further insights we can gain into the behavior of $\zeta(s)$ and other L-functions from these models.

Study the number of zeros of $\zeta_X(s)$ and the number of simple zeros when X is large, say $X = t^{\alpha}$.

$\zeta_X(s)$ approximates $F = \zeta(s) + \chi(s)$ well in $\sigma > 1/2 + \log \log t / \log X$ and on $\sigma = 1/2$ when X is large.

What about in between? Andrew Ledoan is extending these results to the Selberg Class of L-functions.
The general problem is to see what further insights we can gain into the behavior of $\zeta(s)$ and other L-functions from these models.
The general problem is to see what further insights we can gain into the behavior of $\zeta(s)$ and other L-functions from these models.

Study the number of zeros of $\zeta_X(s)$ and the number of simple zeros when X is large, say $X = t^\alpha$.
The general problem is to see what further insights we can gain into the behavior of $\zeta(s)$ and other L-functions from these models.

Study the number of zeros of $\zeta_X(s)$ and the number of simple zeros when X is large, say $X = t^\alpha$.

$\zeta_X(s)$ approximates $F = \zeta(s) + \chi(s)\zeta(\overline{s})$ well in $\sigma > 1/2 + \log \log t / \log X$ and on $\sigma = 1/2$ when X is large. What about in between?
The general problem is to see what further insights we can gain into the behavior of $\zeta(s)$ and other L-functions from these models.

Study the number of zeros of $\zeta_X(s)$ and the number of simple zeros when X is large, say $X = t^\alpha$.

$\zeta_X(s)$ approximates $F = \zeta(s) + \chi(s)\zeta(\overline{s})$ well in $\sigma > 1/2 + \log \log t/\log X$ and on $\sigma = 1/2$ when X is large. What about in between?

Andrew Ledoan is extending these results to the Selberg Class of L-functions.
Another Question

Finite Euler products like \[\prod_{p \leq X} \left(1 - \frac{1}{p^s} \right) - 1 \] play a prominent role here and also in the hybrid Euler-Hadamard product representation of \(\zeta(s) \).

Very little is known analytically about the behavior of such products. For instance, how large is \[\int_0^T \left| \prod_{p \leq X} \left(1 - \frac{1}{p^s} \right) - 1 \right|^{2k} \, dt \]?

Together with Jon Keating, we are trying to determine the outlines of a theory of such moments, even when \(X \) is much larger than \(T \).

(University of Rochester)
Finite Euler products like $\prod_{p \leq X} (1 - p^{-s})^{-1}$ play a prominent role here and also in the hybrid Euler-Hadamard product representation of $\zeta(s)$. Very little is known analytically about the behavior of such products. For instance, how large is $\int_0^T \left| \prod_{p \leq X} (1 - p^{-s})^{-1} \right|^2 dt$? Together with Jon Keating, we are trying to determine the outlines of a theory of such moments, even when X is much larger than T. (University of Rochester)
Finite Euler products like $\prod_{p \leq X} (1 - p^{-s})^{-1}$ play a prominent role here and also in the hybrid Euler-Hadamard product representation of $\zeta(s)$.

Very little is known analytically about the behavior of such products.
Finite Euler products like $\prod_{p \leq X} (1 - p^{-s})^{-1}$ play a prominent role here and also in the hybrid Euler-Hadamard product representation of $\zeta(s)$.

Very little is known analytically about the behavior of such products.

For instance, how large is $\int_0^T \left| \prod_{p \leq X} (1 - p^{-s})^{-1} \right|^{2k} \, dt$?
Finite Euler products like $\prod_{p \leq X} (1 - p^{-s})^{-1}$ play a prominent role here and also in the hybrid Euler-Hadamard product representation of $\zeta(s)$.

Very little is known analytically about the behavior of such products.

For instance, how large is $\int_0^T |\prod_{p \leq X} (1 - p^{-s})^{-1}|^{2k} \, dt$?

Together with Jon Keating, we are trying to determine the outlines of a theory of such moments, even when X is much larger than T.