Selectivity in Quaternion Algebras

Benjamin Linowitz

Dartmouth College
Outline

• Orders in quaternion algebras

• Type numbers

• A few embedding theorems

• Determining when an order is selective
Let F be a field.

A **quaternion algebra** over F is a central simple F-algebra of dimension 4.

By Wedderburn’s theorem, every quaternion algebra is either a division F-algebra or isomorphic to $M_2(F)$.

If $\text{char}(F) \neq 2$ then every quaternion algebra \mathcal{A} over F has an F-basis $\{1, i, j, ij\}$ satisfying

$$i^2 = a, \quad j^2 = b, \quad ij = -ji, \quad a, b \in F^*.$$

Conversely, such an F-basis completely determines a quaternion algebra, typically denoted $(\frac{a,b}{F})$.

Example If $F = \mathbb{R}, a = b = -1$ then we have \mathbb{H}, Hamilton’s quaternions.
Let K be a number field with ring of integers \mathcal{O}_K.

Let \mathfrak{A} be a quaternion algebra over K and p a prime (possibly infinite) of K.

Then $\mathfrak{A}_p := \mathfrak{A} \otimes_K K_p$ is a quaternion algebra over K_p.

If $\mathfrak{A}_p \cong M_2(K_p)$ then p splits in \mathfrak{A}. Otherwise p ramifies in \mathfrak{A}.

Fact Only a finite, even number of primes ramify in \mathfrak{A}.

Example Every prime p of K splits in the matrix algebra $M_2(K)$.
The quaternionic case of a classical theorem:

Theorem (Albert-Brauer-Hasse-Noether). Let \mathcal{A} be a quaternion algebra over a number field K and let L be a quadratic field extension of K. Then there is an embedding of L into \mathcal{A} over F if and only if no prime of K which ramifies in \mathcal{A} splits in L.
If \mathbb{A} is a quaternion algebra over a number field K, then an order $\mathcal{R} \subset \mathbb{A}$ is a subring of \mathbb{A} which is a rank 4 \mathcal{O}_K-module and satisfies $\mathcal{R} \otimes K \cong \mathbb{A}$.

Example $M_2(\mathcal{O}_K)$ is an order in the algebra $M_2(K)$.

Local Theory If \mathcal{R} is an order of \mathbb{A} and p is a finite prime, then its local factor $\mathcal{R}_p := \mathcal{R} \otimes_{\mathcal{O}_K} \mathcal{O}_{K_p}$ is an order of \mathbb{A}_p.

Local-Global Principle Suppose that for every finite K-prime p we have an order \mathcal{R}_p of \mathbb{A}_p. If there exists an order of \mathbb{A} whose local factors are almost always equal to \mathcal{R}_p, then there exists a *unique* order \mathcal{R} of \mathbb{A} whose local factors are always \mathcal{R}_p.

6
3 Classes of Orders

1. An order is **maximal** if it is maximal with respect to inclusion.

2. An order is **Eichler** if it is the intersection of two maximal orders.

3. An order is **primitive** if it contains the ring of integers of a maximal subfield of \(\mathfrak{A} \).
Type numbers

Note From this point on, we assume that there exists an infinite prime which is split in \(\mathcal{A} \) (i.e. \(\mathcal{A} \) satisfies the Eichler condition).

Two orders \(\mathcal{R}, \mathcal{S} \subset \mathcal{A} \) are of the same genus if \(\mathcal{R}_p \cong \mathcal{S}_p \) for all finite primes \(p \).

The type number \(t(\mathcal{R}) \) is the number of isomorphism (conjugacy) classes in the genus of \(\mathcal{R} \).

Fact The type number \(t(\mathcal{R}) \) is always finite.
We can say more then just $t(\mathcal{R}) < \infty$. It turns out that $t(\mathcal{R})$ is a power of 2.

To show this, one proves that there is a bijection between the representatives of orders in the genus of \mathcal{R} and the quotient

$$I_K/H_{\mathcal{R}}$$

where $H_{\mathcal{R}}$ is a subgroup of I_K containing I_{K}^2 and $P_{K,\infty}$, the principal ideals of I_K whose generators are positive at the elements of $Ram_\infty(\mathfrak{A})$.

The proof of this bijection makes critical use of the assumption that \mathfrak{A} satisfies the Eichler condition.

Let $K(\mathcal{R})$ be the class field corresponding to the above quotient. Then $[K(\mathcal{R}) : K] = t(\mathcal{R})$.
Recall the ABHN Theorem:

Theorem (Albert-Brauer-Hasse-Noether). Let \mathbb{A} be a quaternion algebra over a number field K and let L be a quadratic field extension of K. Then there is an embedding of L into \mathbb{A} over F if and only if no prime of K which ramifies in \mathbb{A} splits in L.

Chinburg and Friedman proved an integral refinement of this theorem by considering when an order $\Omega \subset L$ embeds into a maximal order of \mathbb{A}. It is assumed that an embedding of L into \mathbb{A} exists.

Theorem (Chinburg and Friedman) *Assumptions as above, an order $\Omega \subset L$ can be embedded into either all maximal orders of \mathbb{A} or into those belonging to exactly half of the isomorphism classes of maximal orders.*
This generalizes to arbitrary orders $\mathcal{R} \subset \mathfrak{A}$.

Theorem (L.) The proportion of the genus of \mathcal{R} into which an order $\Omega \subset L$ can be embedded is $0, \frac{1}{2}$ or 1.

In the maximal case, Ω is always contained in a maximal order.

If \mathcal{R} is not a maximal order, then it is possible to have an embedding of Ω into \mathfrak{A} but not into the genus of \mathcal{R}.

Example Let \mathcal{R} be any order which is not primitive. If L is any quadratic extension field of K contained in \mathfrak{A} then \mathcal{O}_L embeds into \mathfrak{A} but not into the genus of \mathcal{R} by definition of primitivity.
We now have two questions to answer:

(1) When does Ω embed into an order in the genus of \mathcal{R}?

(2) If Ω does embed into the genus of \mathcal{R}, when is it selective?
(1) When does Ω embed into the genus of \mathcal{R}?

An **optimal embedding** of Ω into \mathcal{R} is an embedding

$$\varphi : L \rightarrow \mathcal{A} \quad \varphi(\Omega) = \varphi(L) \cap \mathcal{R}.$$

Proposition 1 Ω embeds into the genus of \mathcal{R} if and only if there is an overorder Ω^* of Ω and an optimal embedding of Ω^* into the genus of \mathcal{R}.

Proposition 2 There is an overorder Ω^* of Ω and an optimal embedding of Ω^* into the genus of \mathcal{R} if and only if, for all K-primes \mathfrak{p}, there is an overorder $\Omega^*_\mathfrak{p}$ of $\Omega_\mathfrak{p}$ which optimally embeds into $\mathcal{R}_\mathfrak{p}$.

These propositions reduce (1) to local optimal embedding theory, which exists for Eichler and primitive orders.
(2) If Ω does embed into the genus of \mathcal{R}, when is it selective?

In the maximal case,

Theorem (Chinburg and Friedman) Ω is selective for maximal orders in \mathfrak{A} if and only if the following conditions hold:

1. The extension L/K and the algebra \mathfrak{A} are unramified at all finite primes and ramify at exactly the same real primes.

2. All prime ideals of K dividing the relative discriminant ideal d_{Ω/\mathcal{O}_K} of Ω split in L/K.
If \(\mathcal{R} \subset \mathfrak{A} \) is an arbitrary order,

Theorem (L.) \(\Omega \) is selective for \(\mathcal{R} \) if and only if the following conditions hold:

1. There is a containment of fields \(L \subset K(\mathcal{R}) \).

2. All prime ideals of \(K \) dividing the relative discriminant ideal \(d_{\Omega/\mathcal{O}_K} \) of \(\Omega \) split in \(L/K \).